Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Ant-inspired Algorithms in Health Information System Data Mining, Classification and Visualization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F16%3A00307020" target="_blank" >RIV/68407700:21460/16:00307020 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/16:00307020

  • Výsledek na webu

    <a href="http://80.link.springer.com.dialog.cvut.cz/chapter/10.1007/978-3-319-32703-7_171" target="_blank" >http://80.link.springer.com.dialog.cvut.cz/chapter/10.1007/978-3-319-32703-7_171</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-32703-7_170" target="_blank" >10.1007/978-3-319-32703-7_170</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Ant-inspired Algorithms in Health Information System Data Mining, Classification and Visualization

  • Popis výsledku v původním jazyce

    In the paper we describe the process of cardiotocography (CTG) record clustering and the effort that was taken to retrieve information from an old (approx. 15 yrs) hospital information system. It consisted of retrieving data from DB tables in the form of unstructured text attributes. Information retrieval had to be performed for complementing cardiotocography signals with additional information. This was needed for further rule discovery mining and automated processing as the main goal was asphyxia prediction during delivery. A graph-based visualization technique has been designed and developed. Together with experts it helped to handle and efficiently process great amount of unstructured (or semi-structured data). Of course, we have used and tested several approaches: automated, semi-automated and manual clustering of the records. In the (semi-)automated experiments we have used k-means, self-organizing map and self-organizing approach inspired by ant-colonies. The overview obtained was consulted with medical experts and served for further mining and information retrieval from the database. Furthermore, an evaluation of CTG signal classification was carried out using multiple methods. These methods used different classification approaches (Naive Bayes, rule and tree based classifiers, etc.). We conducted ten-fold crossvalidation and for each experiment we have gathered multiple quantitative objective measures that have been statistically evaluated. As the best-performing method we have identified the ant-inspired ACO_DTree algorithm that performed significantly better and provided comprehensible results.

  • Název v anglickém jazyce

    Ant-inspired Algorithms in Health Information System Data Mining, Classification and Visualization

  • Popis výsledku anglicky

    In the paper we describe the process of cardiotocography (CTG) record clustering and the effort that was taken to retrieve information from an old (approx. 15 yrs) hospital information system. It consisted of retrieving data from DB tables in the form of unstructured text attributes. Information retrieval had to be performed for complementing cardiotocography signals with additional information. This was needed for further rule discovery mining and automated processing as the main goal was asphyxia prediction during delivery. A graph-based visualization technique has been designed and developed. Together with experts it helped to handle and efficiently process great amount of unstructured (or semi-structured data). Of course, we have used and tested several approaches: automated, semi-automated and manual clustering of the records. In the (semi-)automated experiments we have used k-means, self-organizing map and self-organizing approach inspired by ant-colonies. The overview obtained was consulted with medical experts and served for further mining and information retrieval from the database. Furthermore, an evaluation of CTG signal classification was carried out using multiple methods. These methods used different classification approaches (Naive Bayes, rule and tree based classifiers, etc.). We conducted ten-fold crossvalidation and for each experiment we have gathered multiple quantitative objective measures that have been statistically evaluated. As the best-performing method we have identified the ant-inspired ACO_DTree algorithm that performed significantly better and provided comprehensible results.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/NV15-31398A" target="_blank" >NV15-31398A: Charakteristiky elektromechanické dyssynchronie predikující efekt srdeční resynchronizační terapie</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    XIV MEDITERRANEAN CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING 2016

  • ISBN

    978-3-319-32701-3

  • ISSN

    1680-0737

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    868-873

  • Název nakladatele

    Springer

  • Místo vydání

    New York

  • Místo konání akce

    Paphos

  • Datum konání akce

    31. 3. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000376283000170