Ant-inspired Algorithms in Health Information System Data Mining, Classification and Visualization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F16%3A00307020" target="_blank" >RIV/68407700:21460/16:00307020 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/16:00307020
Výsledek na webu
<a href="http://80.link.springer.com.dialog.cvut.cz/chapter/10.1007/978-3-319-32703-7_171" target="_blank" >http://80.link.springer.com.dialog.cvut.cz/chapter/10.1007/978-3-319-32703-7_171</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-32703-7_170" target="_blank" >10.1007/978-3-319-32703-7_170</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ant-inspired Algorithms in Health Information System Data Mining, Classification and Visualization
Popis výsledku v původním jazyce
In the paper we describe the process of cardiotocography (CTG) record clustering and the effort that was taken to retrieve information from an old (approx. 15 yrs) hospital information system. It consisted of retrieving data from DB tables in the form of unstructured text attributes. Information retrieval had to be performed for complementing cardiotocography signals with additional information. This was needed for further rule discovery mining and automated processing as the main goal was asphyxia prediction during delivery. A graph-based visualization technique has been designed and developed. Together with experts it helped to handle and efficiently process great amount of unstructured (or semi-structured data). Of course, we have used and tested several approaches: automated, semi-automated and manual clustering of the records. In the (semi-)automated experiments we have used k-means, self-organizing map and self-organizing approach inspired by ant-colonies. The overview obtained was consulted with medical experts and served for further mining and information retrieval from the database. Furthermore, an evaluation of CTG signal classification was carried out using multiple methods. These methods used different classification approaches (Naive Bayes, rule and tree based classifiers, etc.). We conducted ten-fold crossvalidation and for each experiment we have gathered multiple quantitative objective measures that have been statistically evaluated. As the best-performing method we have identified the ant-inspired ACO_DTree algorithm that performed significantly better and provided comprehensible results.
Název v anglickém jazyce
Ant-inspired Algorithms in Health Information System Data Mining, Classification and Visualization
Popis výsledku anglicky
In the paper we describe the process of cardiotocography (CTG) record clustering and the effort that was taken to retrieve information from an old (approx. 15 yrs) hospital information system. It consisted of retrieving data from DB tables in the form of unstructured text attributes. Information retrieval had to be performed for complementing cardiotocography signals with additional information. This was needed for further rule discovery mining and automated processing as the main goal was asphyxia prediction during delivery. A graph-based visualization technique has been designed and developed. Together with experts it helped to handle and efficiently process great amount of unstructured (or semi-structured data). Of course, we have used and tested several approaches: automated, semi-automated and manual clustering of the records. In the (semi-)automated experiments we have used k-means, self-organizing map and self-organizing approach inspired by ant-colonies. The overview obtained was consulted with medical experts and served for further mining and information retrieval from the database. Furthermore, an evaluation of CTG signal classification was carried out using multiple methods. These methods used different classification approaches (Naive Bayes, rule and tree based classifiers, etc.). We conducted ten-fold crossvalidation and for each experiment we have gathered multiple quantitative objective measures that have been statistically evaluated. As the best-performing method we have identified the ant-inspired ACO_DTree algorithm that performed significantly better and provided comprehensible results.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/NV15-31398A" target="_blank" >NV15-31398A: Charakteristiky elektromechanické dyssynchronie predikující efekt srdeční resynchronizační terapie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
XIV MEDITERRANEAN CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING 2016
ISBN
978-3-319-32701-3
ISSN
1680-0737
e-ISSN
—
Počet stran výsledku
6
Strana od-do
868-873
Název nakladatele
Springer
Místo vydání
New York
Místo konání akce
Paphos
Datum konání akce
31. 3. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000376283000170