Information retrieval from hospital information system: Increasing effectivity using swarm intelligence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F65269705%3A_____%2F15%3A00063038" target="_blank" >RIV/65269705:_____/15:00063038 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/15:00225922 RIV/00216224:14110/15:00082475
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S1570868314000809" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1570868314000809</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jal.2014.11.006" target="_blank" >10.1016/j.jal.2014.11.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Information retrieval from hospital information system: Increasing effectivity using swarm intelligence
Popis výsledku v původním jazyce
This paper details the process of mining information from a hospital information system that has been designed approximately 15 years ago. The information is distributed within database tables in large textual attributes with a free structure. Information retrieval from these information is necessary for complementing cardiotocography signals with additional information that is to be implemented in a decision support system. The basic statistical overview (n-gram analysis) helped with the insight into data structure, however more sophisticated methods have to be used as human (and expert) processing of the whole data were out of consideration: over 620,000 text fields contained text reports in natural language with (many) typographical errors, duplicates, ambiguities, syntax errors and many (nonstandard) abbreviations. There was a strong need to efficiently determine the overall structure of the database and discover information that is important from the clinical point of view. We have used three different methods: k-means, self-organizing map and a self-organizing approach inspired by ant-colonies that performed clustering of the records. The records were visualized and revealed the most prominent information structure(s) that were consulted with medical experts and served for further mining from the database. The outcome of this task is a set of ordered or nominal attributes with a structural information that is available for rule discovery mining and automated processing for the research of asphyxia prediction during delivery. The proposed methodology has significantly reduced the processing time of loosely structured textual records for both IT and medical experts.
Název v anglickém jazyce
Information retrieval from hospital information system: Increasing effectivity using swarm intelligence
Popis výsledku anglicky
This paper details the process of mining information from a hospital information system that has been designed approximately 15 years ago. The information is distributed within database tables in large textual attributes with a free structure. Information retrieval from these information is necessary for complementing cardiotocography signals with additional information that is to be implemented in a decision support system. The basic statistical overview (n-gram analysis) helped with the insight into data structure, however more sophisticated methods have to be used as human (and expert) processing of the whole data were out of consideration: over 620,000 text fields contained text reports in natural language with (many) typographical errors, duplicates, ambiguities, syntax errors and many (nonstandard) abbreviations. There was a strong need to efficiently determine the overall structure of the database and discover information that is important from the clinical point of view. We have used three different methods: k-means, self-organizing map and a self-organizing approach inspired by ant-colonies that performed clustering of the records. The records were visualized and revealed the most prominent information structure(s) that were consulted with medical experts and served for further mining from the database. The outcome of this task is a set of ordered or nominal attributes with a structural information that is available for rule discovery mining and automated processing for the research of asphyxia prediction during delivery. The proposed methodology has significantly reduced the processing time of loosely structured textual records for both IT and medical experts.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
FD - Onkologie a hematologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/NT11124" target="_blank" >NT11124: Vliv hodnocení kardiotokografie pomocí metod umělé inteligence na kvalitu perinatální péče</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF APPLIED LOGIC
ISSN
1570-8683
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
2 SI
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
126-137
Kód UT WoS článku
000350924200005
EID výsledku v databázi Scopus
—