Optimal Parameters of Adaptive Segmentation for Epileptic Graphoelements Recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F17%3A00311885" target="_blank" >RIV/68407700:21460/17:00311885 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/17:00311885
Výsledek na webu
<a href="https://www.radioeng.cz/fulltexts/2017/17_01_0323_0329.pdf" target="_blank" >https://www.radioeng.cz/fulltexts/2017/17_01_0323_0329.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/re.2017.0323" target="_blank" >10.13164/re.2017.0323</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimal Parameters of Adaptive Segmentation for Epileptic Graphoelements Recognition
Popis výsledku v původním jazyce
Manual review of EEG records, as it is performed in common medical practice, is very time-consuming. There is an effort to make this analysis easier and faster for neurologists by using systems for automatic EEG graphoelements recognition. Such a system is composed of three steps: (1) segmentation, which is a subject of this article, (2) features extraction and (3) classification. Precision of classification, and thereby the whole recognition, is strongly affected by the quality of preceding segmentation procedure, which depends on the method of segmentation and its parameters. In this paper, Varri's method for segmentation of real epileptic EEG signals is used. Effect of input parameters on segmentation outcome is discussed and parameters values are proposed to achieve optimal outcome suitable for the following classification and graphoelements recognition. Only the results of segmentation are presented in this paper.
Název v anglickém jazyce
Optimal Parameters of Adaptive Segmentation for Epileptic Graphoelements Recognition
Popis výsledku anglicky
Manual review of EEG records, as it is performed in common medical practice, is very time-consuming. There is an effort to make this analysis easier and faster for neurologists by using systems for automatic EEG graphoelements recognition. Such a system is composed of three steps: (1) segmentation, which is a subject of this article, (2) features extraction and (3) classification. Precision of classification, and thereby the whole recognition, is strongly affected by the quality of preceding segmentation procedure, which depends on the method of segmentation and its parameters. In this paper, Varri's method for segmentation of real epileptic EEG signals is used. Effect of input parameters on segmentation outcome is discussed and parameters values are proposed to achieve optimal outcome suitable for the following classification and graphoelements recognition. Only the results of segmentation are presented in this paper.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Radioengineering
ISSN
1210-2512
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
7
Strana od-do
323-329
Kód UT WoS článku
000399735900042
EID výsledku v databázi Scopus
2-s2.0-85018337281