Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

NeuroEDA – An Interactive Web Tool for Neuroinformatics Data Analysis and Teaching Biomedical Statistics

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F17%3A00316268" target="_blank" >RIV/68407700:21460/17:00316268 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://mj.mefanet.cz/mj-20170724" target="_blank" >http://mj.mefanet.cz/mj-20170724</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    NeuroEDA – An Interactive Web Tool for Neuroinformatics Data Analysis and Teaching Biomedical Statistics

  • Popis výsledku v původním jazyce

    Objective: The aim of the study is to design and develop software, which implements current EDA packages and model making procedures for neurological data analyses which could be easily modified. The second objective is to evaluate the possibility of supporting the education of biomedical engineering students at the undergraduate level in order to provide effective support in biomedical data analysis. Methods: An application has been created under the reactive Shiny framework in the R language. Data in .csv or .tsv format are processed on the server side of the application. Results: We have developed a new easy-to-use software named NeuroEDA for interactive web-based biomedical data assessment. This application covers basic descriptive statistics, exploratory graphs and cluster analysis, which is also suitable for big data examination. Furthermore, this application offers methods for robust and non-parametric analysis. These are particularly useful in neuroinformatics from our long-term experience. The application was practically deployed in the evaluation of clinical neurological data and in teaching the subject Biomedical Statistics. Conclusion: We have introduced the possibility of creating biomedical software for clinical use and demonstration in teaching. Among the advantages of the application, is that it is easily expandability with new R packages and quick processing in web browsers. The interactive user interface allows one to work with R’s functions without needing scripting/programming knowledge. Students can acquire practical experience in processing and transformation of heterogeneous medical data not only in biomedical engineering fields, but also at the medical faculties for Medical Informatics. This application is actively used for neuroinformatics data assessment and in discovering some potentially useable hypotheses.

  • Název v anglickém jazyce

    NeuroEDA – An Interactive Web Tool for Neuroinformatics Data Analysis and Teaching Biomedical Statistics

  • Popis výsledku anglicky

    Objective: The aim of the study is to design and develop software, which implements current EDA packages and model making procedures for neurological data analyses which could be easily modified. The second objective is to evaluate the possibility of supporting the education of biomedical engineering students at the undergraduate level in order to provide effective support in biomedical data analysis. Methods: An application has been created under the reactive Shiny framework in the R language. Data in .csv or .tsv format are processed on the server side of the application. Results: We have developed a new easy-to-use software named NeuroEDA for interactive web-based biomedical data assessment. This application covers basic descriptive statistics, exploratory graphs and cluster analysis, which is also suitable for big data examination. Furthermore, this application offers methods for robust and non-parametric analysis. These are particularly useful in neuroinformatics from our long-term experience. The application was practically deployed in the evaluation of clinical neurological data and in teaching the subject Biomedical Statistics. Conclusion: We have introduced the possibility of creating biomedical software for clinical use and demonstration in teaching. Among the advantages of the application, is that it is easily expandability with new R packages and quick processing in web browsers. The interactive user interface allows one to work with R’s functions without needing scripting/programming knowledge. Students can acquire practical experience in processing and transformation of heterogeneous medical data not only in biomedical engineering fields, but also at the medical faculties for Medical Informatics. This application is actively used for neuroinformatics data assessment and in discovering some potentially useable hypotheses.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/NV16-28119A" target="_blank" >NV16-28119A: Analýza pohybových poruch pro studium mechanismů postižení u extrapyramidových onemocnění pomocí „motion capture“ kamerových systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    MEFANET Journal

  • ISSN

    1805-9163

  • e-ISSN

    1805-9171

  • Svazek periodika

    5

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    7

  • Strana od-do

    62-68

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus