Noninvasive imaging of the origin of premature ventricular activity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F19%3A00322286" target="_blank" >RIV/68407700:21460/19:00322286 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-981-10-9035-6_18" target="_blank" >http://dx.doi.org/10.1007/978-981-10-9035-6_18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-10-9035-6_18" target="_blank" >10.1007/978-981-10-9035-6_18</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Noninvasive imaging of the origin of premature ventricular activity
Popis výsledku v původním jazyce
The localization and imaging of the origin of premature ventricular complex (PVC) before the electrophysiological study (EPS) can significantly shorten the time needed for the ablation procedure. In this paper, a method allowing noninvasive localization of the PVC origin by solving the inverse problem of electrocardiography and finding a dipolar source best representing the initial ectopic activity is presented. It requires measurement of body surface potential (BSP) maps and a model of the patient torso obtained from CT. To test the method, 96 ECG leads were measured in 5 patients and 128 leads in another 2 patients. BSP maps from the initial interval of several PVCs were used to solve the inverse problem using inhomogeneous (IT) or simplified homogeneous (HT) patient specific torso model. All measured ECG leads, as well as only selected 64, 48 or 32 leads of the 96 lead set were used for the inverse computations. The inversely obtained dipole locations were compared with the catheter positions during successful ablation within the EPS. In five patients the PVC origin was found in the right ventricular outflow tract (RVOT), in the remaining two patients it was in the left ventricle (LV). The noninvasive method localized the PVC origins in correct heart segments in all but one patient with localization errors of up to about 2 cm. In one patient the true origin in RVOT was localized in LV but still within 2 cm from the true position. The employment of the more detailed IT torso model did not bring significant improvement of the localization but the dispersion of solutions from different PVCs increased. The use of subsets of 48 or less ECG leads resulted in increased number of incorrect localizations. If the IT torso model was employed, there were a few incorrect localizations also when 64 ECG leads were used.
Název v anglickém jazyce
Noninvasive imaging of the origin of premature ventricular activity
Popis výsledku anglicky
The localization and imaging of the origin of premature ventricular complex (PVC) before the electrophysiological study (EPS) can significantly shorten the time needed for the ablation procedure. In this paper, a method allowing noninvasive localization of the PVC origin by solving the inverse problem of electrocardiography and finding a dipolar source best representing the initial ectopic activity is presented. It requires measurement of body surface potential (BSP) maps and a model of the patient torso obtained from CT. To test the method, 96 ECG leads were measured in 5 patients and 128 leads in another 2 patients. BSP maps from the initial interval of several PVCs were used to solve the inverse problem using inhomogeneous (IT) or simplified homogeneous (HT) patient specific torso model. All measured ECG leads, as well as only selected 64, 48 or 32 leads of the 96 lead set were used for the inverse computations. The inversely obtained dipole locations were compared with the catheter positions during successful ablation within the EPS. In five patients the PVC origin was found in the right ventricular outflow tract (RVOT), in the remaining two patients it was in the left ventricle (LV). The noninvasive method localized the PVC origins in correct heart segments in all but one patient with localization errors of up to about 2 cm. In one patient the true origin in RVOT was localized in LV but still within 2 cm from the true position. The employment of the more detailed IT torso model did not bring significant improvement of the localization but the dispersion of solutions from different PVCs increased. The use of subsets of 48 or less ECG leads resulted in increased number of incorrect localizations. If the IT torso model was employed, there were a few incorrect localizations also when 64 ECG leads were used.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
World Congress on Medical Physics and Biomedical Engineering 2018 (Vol. 1)
ISBN
978-981-10-9034-9
ISSN
1680-0737
e-ISSN
—
Počet stran výsledku
5
Strana od-do
97-101
Název nakladatele
Springer Nature Singapore Pte Ltd.
Místo vydání
—
Místo konání akce
Prague
Datum konání akce
3. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000450908300018