Low temperature synthesis of transparent conductive boron doped diamond films for optoelectronic applications: Role of hydrogen on the electrical properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F20%3A00357349" target="_blank" >RIV/68407700:21460/20:00357349 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/20:00524966 RIV/61388955:_____/20:00524966 RIV/26722445:_____/20:N0000010
Výsledek na webu
<a href="https://doi.org/10.1016/j.apmt.2020.100633" target="_blank" >https://doi.org/10.1016/j.apmt.2020.100633</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apmt.2020.100633" target="_blank" >10.1016/j.apmt.2020.100633</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Low temperature synthesis of transparent conductive boron doped diamond films for optoelectronic applications: Role of hydrogen on the electrical properties
Popis výsledku v původním jazyce
Transparent conductive electrodes are principal components in various optoelectronic devices and technologies. As such, diamond coatings in the form of electrically conductive thin films are envisioned to provide advantageous chemical and mechanical characteristics/stability in a variety of modern technologies including optoelectronics, biosensing, electrochemical and micromechanical systems. However, deposition of electrically conductive polycrystalline diamond coatings for such applications is currently a challenging task, since temperatures above 600 degrees C are usually required to ensure good diamond layer quality, which in turn limits the selection of substrates, to materials capable of withstanding exposure to high temperatures. In the present work, we investigate routes toward enhancement of electrical characteristics of nanocrystalline boron-doped diamond (BDD) films fabricated at low temperatures via chemical vapour deposition. We found that post-growth processing of BDD layers enhances their electrical properties, which otherwise are dependent on the employed deposition temperature regime. Finally, we show that integration of an electrically conductive Ti grid opens a route for fabrication of highly transparent and conductive composite nanocrystalline BDD electrodes over large areas at temperatures as low as 250 degrees C. (C) 2020 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
Low temperature synthesis of transparent conductive boron doped diamond films for optoelectronic applications: Role of hydrogen on the electrical properties
Popis výsledku anglicky
Transparent conductive electrodes are principal components in various optoelectronic devices and technologies. As such, diamond coatings in the form of electrically conductive thin films are envisioned to provide advantageous chemical and mechanical characteristics/stability in a variety of modern technologies including optoelectronics, biosensing, electrochemical and micromechanical systems. However, deposition of electrically conductive polycrystalline diamond coatings for such applications is currently a challenging task, since temperatures above 600 degrees C are usually required to ensure good diamond layer quality, which in turn limits the selection of substrates, to materials capable of withstanding exposure to high temperatures. In the present work, we investigate routes toward enhancement of electrical characteristics of nanocrystalline boron-doped diamond (BDD) films fabricated at low temperatures via chemical vapour deposition. We found that post-growth processing of BDD layers enhances their electrical properties, which otherwise are dependent on the employed deposition temperature regime. Finally, we show that integration of an electrically conductive Ti grid opens a route for fabrication of highly transparent and conductive composite nanocrystalline BDD electrodes over large areas at temperatures as low as 250 degrees C. (C) 2020 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Materials Today
ISSN
2352-9407
e-ISSN
2352-9407
Svazek periodika
19
Číslo periodika v rámci svazku
100633
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
000546200100007
EID výsledku v databázi Scopus
2-s2.0-85082962358