Evaluation of Functional Tests Performance Using a Camera-based and Machine Learning Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F23%3A00369630" target="_blank" >RIV/68407700:21460/23:00369630 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11510/23:10472238 RIV/68407700:21730/23:00369630
Výsledek na webu
<a href="https://doi.org/10.1371/journal.pone.0288279" target="_blank" >https://doi.org/10.1371/journal.pone.0288279</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0288279" target="_blank" >10.1371/journal.pone.0288279</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of Functional Tests Performance Using a Camera-based and Machine Learning Approach
Popis výsledku v původním jazyce
The objective of this study is to evaluate the performance of functional tests using a camera-based system and machine learning techniques. Specifically, we investigate whether OpenPose and any standard camera can be used to assess the quality of the Single Leg Squat Test and Step Down Test functional tests. We recorded these exercises performed by forty-six healthy subjects, extract motion data, and classify them to expert assessments by three independent physiotherapists using 15 binary parameters. We calculated ranges of movement in Keypoint-pair orientations, joint angles, and relative distances of the monitored segments and used machine learning algorithms to predict the physiotherapists’ assessments. Our results show that the AdaBoost classifier achieved a specificity of 0.8, a sensitivity of 0.68, and an accuracy of 0.7. Our findings suggest that a camera-based system combined with machine learning algorithms can be a simple and inexpensive tool to assess the performance quality of functional tests.
Název v anglickém jazyce
Evaluation of Functional Tests Performance Using a Camera-based and Machine Learning Approach
Popis výsledku anglicky
The objective of this study is to evaluate the performance of functional tests using a camera-based system and machine learning techniques. Specifically, we investigate whether OpenPose and any standard camera can be used to assess the quality of the Single Leg Squat Test and Step Down Test functional tests. We recorded these exercises performed by forty-six healthy subjects, extract motion data, and classify them to expert assessments by three independent physiotherapists using 15 binary parameters. We calculated ranges of movement in Keypoint-pair orientations, joint angles, and relative distances of the monitored segments and used machine learning algorithms to predict the physiotherapists’ assessments. Our results show that the AdaBoost classifier achieved a specificity of 0.8, a sensitivity of 0.68, and an accuracy of 0.7. Our findings suggest that a camera-based system combined with machine learning algorithms can be a simple and inexpensive tool to assess the performance quality of functional tests.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/TM03000048" target="_blank" >TM03000048: Inteligentní systém služeb na podporu zdraví</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS ONE
ISSN
1932-6203
e-ISSN
1932-6203
Svazek periodika
2023
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
001098807300015
EID výsledku v databázi Scopus
2-s2.0-85175968582