Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evaluation of Functional Tests Performance Using a Camera-based and Machine Learning Approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F23%3A00369630" target="_blank" >RIV/68407700:21460/23:00369630 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11510/23:10472238 RIV/68407700:21730/23:00369630

  • Výsledek na webu

    <a href="https://doi.org/10.1371/journal.pone.0288279" target="_blank" >https://doi.org/10.1371/journal.pone.0288279</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0288279" target="_blank" >10.1371/journal.pone.0288279</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evaluation of Functional Tests Performance Using a Camera-based and Machine Learning Approach

  • Popis výsledku v původním jazyce

    The objective of this study is to evaluate the performance of functional tests using a camera-based system and machine learning techniques. Specifically, we investigate whether OpenPose and any standard camera can be used to assess the quality of the Single Leg Squat Test and Step Down Test functional tests. We recorded these exercises performed by forty-six healthy subjects, extract motion data, and classify them to expert assessments by three independent physiotherapists using 15 binary parameters. We calculated ranges of movement in Keypoint-pair orientations, joint angles, and relative distances of the monitored segments and used machine learning algorithms to predict the physiotherapists’ assessments. Our results show that the AdaBoost classifier achieved a specificity of 0.8, a sensitivity of 0.68, and an accuracy of 0.7. Our findings suggest that a camera-based system combined with machine learning algorithms can be a simple and inexpensive tool to assess the performance quality of functional tests.

  • Název v anglickém jazyce

    Evaluation of Functional Tests Performance Using a Camera-based and Machine Learning Approach

  • Popis výsledku anglicky

    The objective of this study is to evaluate the performance of functional tests using a camera-based system and machine learning techniques. Specifically, we investigate whether OpenPose and any standard camera can be used to assess the quality of the Single Leg Squat Test and Step Down Test functional tests. We recorded these exercises performed by forty-six healthy subjects, extract motion data, and classify them to expert assessments by three independent physiotherapists using 15 binary parameters. We calculated ranges of movement in Keypoint-pair orientations, joint angles, and relative distances of the monitored segments and used machine learning algorithms to predict the physiotherapists’ assessments. Our results show that the AdaBoost classifier achieved a specificity of 0.8, a sensitivity of 0.68, and an accuracy of 0.7. Our findings suggest that a camera-based system combined with machine learning algorithms can be a simple and inexpensive tool to assess the performance quality of functional tests.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TM03000048" target="_blank" >TM03000048: Inteligentní systém služeb na podporu zdraví</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PLoS ONE

  • ISSN

    1932-6203

  • e-ISSN

    1932-6203

  • Svazek periodika

    2023

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    1-15

  • Kód UT WoS článku

    001098807300015

  • EID výsledku v databázi Scopus

    2-s2.0-85175968582