Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Using EfficientNet-B7 (CNN), Variational Auto Encoder (VAE) and Siamese Twins’ Networks to Evaluate Human Exercises as Super Objects in a TSSCI Images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F23%3A00369906" target="_blank" >RIV/68407700:21460/23:00369906 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/23:00369906

  • Výsledek na webu

    <a href="https://doi.org/10.3390/jpm13050874" target="_blank" >https://doi.org/10.3390/jpm13050874</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/jpm13050874" target="_blank" >10.3390/jpm13050874</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Using EfficientNet-B7 (CNN), Variational Auto Encoder (VAE) and Siamese Twins’ Networks to Evaluate Human Exercises as Super Objects in a TSSCI Images

  • Popis výsledku v původním jazyce

    In this article, we introduce a new approach to human movement by defining the movement as a static super object represented by a single two-dimensional image. The described method is applicable in remote healthcare applications, such as physiotherapeutic exercises. It allows researchers to label and describe the entire exercise as a standalone object, isolated from the reference video. This approach allows us to perform various tasks, including detecting similar movements in a video, measuring and comparing movements, generating new similar movements, and defining choreography by controlling specific parameters in the human body skeleton. As a result of the presented approach, we can eliminate the need to label images manually, disregard the problem of finding the start and the end of an exercise, overcome synchronization issues between movements, and perform any deep learning network-based operation that processes super objects in images in general. As part of this article, we will demonstrate two application use cases: one illustrates how to verify and score a fitness exercise. In contrast, the other illustrates how to generate similar movements in the human skeleton space by addressing the challenge of supplying sufficient training data for deep learning applications (DL). A variational auto encoder (VAE) simulator and an EfficientNet-B7 classifier architecture embedded within a Siamese twin neural network are presented in this paper in order to demonstrate the two use cases.

  • Název v anglickém jazyce

    Using EfficientNet-B7 (CNN), Variational Auto Encoder (VAE) and Siamese Twins’ Networks to Evaluate Human Exercises as Super Objects in a TSSCI Images

  • Popis výsledku anglicky

    In this article, we introduce a new approach to human movement by defining the movement as a static super object represented by a single two-dimensional image. The described method is applicable in remote healthcare applications, such as physiotherapeutic exercises. It allows researchers to label and describe the entire exercise as a standalone object, isolated from the reference video. This approach allows us to perform various tasks, including detecting similar movements in a video, measuring and comparing movements, generating new similar movements, and defining choreography by controlling specific parameters in the human body skeleton. As a result of the presented approach, we can eliminate the need to label images manually, disregard the problem of finding the start and the end of an exercise, overcome synchronization issues between movements, and perform any deep learning network-based operation that processes super objects in images in general. As part of this article, we will demonstrate two application use cases: one illustrates how to verify and score a fitness exercise. In contrast, the other illustrates how to generate similar movements in the human skeleton space by addressing the challenge of supplying sufficient training data for deep learning applications (DL). A variational auto encoder (VAE) simulator and an EfficientNet-B7 classifier architecture embedded within a Siamese twin neural network are presented in this paper in order to demonstrate the two use cases.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTAIZ19008" target="_blank" >LTAIZ19008: Zkvalitnění robotické fyzioterapeutické léčby pomocí metod strojového učení</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Personalized Medicine

  • ISSN

    2075-4426

  • e-ISSN

    2075-4426

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    32

  • Strana od-do

  • Kód UT WoS článku

    001020278300001

  • EID výsledku v databázi Scopus

    2-s2.0-85160297216