Evaluating the Performance of wav2vec Embedding for Parkinson's Disease Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F23%3A00370047" target="_blank" >RIV/68407700:21460/23:00370047 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.2478/msr-2023-0033" target="_blank" >https://doi.org/10.2478/msr-2023-0033</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/msr-2023-0033" target="_blank" >10.2478/msr-2023-0033</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluating the Performance of wav2vec Embedding for Parkinson's Disease Detection
Popis výsledku v původním jazyce
Speech is one of the most serious manifestations of Parkinson's disease (PD). Sophisticated language/speech models have already demonstrated impressive performance on a variety of tasks, including classification. By analysing large amounts of data from a given setting, these models can identify patterns that would be difficult for clinicians to detect. We focus on evaluating the performance of a large self-supervised speech representation model, wav2vec, for PD classification. Based on the computed wav2vec embedding for each available speech signal, we calculated two sets of 512 derived features, wav2vec-sum and wav2vec-mean. Unlike traditional signal processing methods, this approach can learn a suitable representation of the signal directly from the data without requiring manual or hand-crafted feature extraction. Using an ensemble random forest classifier, we evaluated the embedding-based features on three different healthy vs. PD datasets (participants rhythmically repeat syllables /pa/, Italian dataset and English dataset). The obtained results showed that the wav2vec signal representation was accurate, with a minimum area under the receiver operating characteristic curve (AUROC) of 0.77 for the /pa/ task and the best AUROC of 0.98 for the Italian speech classification. The findings highlight the potential of the generalisability of the wav2vec features and the performance of these features in the cross-database scenarios. 2023 Ondřej Klempíř et al., published by Sciendo.
Název v anglickém jazyce
Evaluating the Performance of wav2vec Embedding for Parkinson's Disease Detection
Popis výsledku anglicky
Speech is one of the most serious manifestations of Parkinson's disease (PD). Sophisticated language/speech models have already demonstrated impressive performance on a variety of tasks, including classification. By analysing large amounts of data from a given setting, these models can identify patterns that would be difficult for clinicians to detect. We focus on evaluating the performance of a large self-supervised speech representation model, wav2vec, for PD classification. Based on the computed wav2vec embedding for each available speech signal, we calculated two sets of 512 derived features, wav2vec-sum and wav2vec-mean. Unlike traditional signal processing methods, this approach can learn a suitable representation of the signal directly from the data without requiring manual or hand-crafted feature extraction. Using an ensemble random forest classifier, we evaluated the embedding-based features on three different healthy vs. PD datasets (participants rhythmically repeat syllables /pa/, Italian dataset and English dataset). The obtained results showed that the wav2vec signal representation was accurate, with a minimum area under the receiver operating characteristic curve (AUROC) of 0.77 for the /pa/ task and the best AUROC of 0.98 for the Italian speech classification. The findings highlight the potential of the generalisability of the wav2vec features and the performance of these features in the cross-database scenarios. 2023 Ondřej Klempíř et al., published by Sciendo.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LX22NPO5107" target="_blank" >LX22NPO5107: Národní ústav pro neurologický výzkum</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Measurement Science Review
ISSN
1335-8871
e-ISSN
1335-8871
Svazek periodika
23
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
8
Strana od-do
260-267
Kód UT WoS článku
001111312600002
EID výsledku v databázi Scopus
2-s2.0-85178023933