A new technique based on convolutional neural networks to measure the energy of protons and electrons with a single Timepix detector
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21670%2F21%3A00350009" target="_blank" >RIV/68407700:21670/21:00350009 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TNS.2021.3071583" target="_blank" >https://doi.org/10.1109/TNS.2021.3071583</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TNS.2021.3071583" target="_blank" >10.1109/TNS.2021.3071583</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A new technique based on convolutional neural networks to measure the energy of protons and electrons with a single Timepix detector
Popis výsledku v původním jazyce
The Timepix chip has been exposed to the outer space for the first time with the Space Application of Timepix-based Radiation Monitor (SATRAM) instrument on Project for On-Board Autonomy Vegetation (Proba-V), a European Space Agency's (ESA) satellite. The objective of this study is to develop a new technique to improve the separation of protons and electrons, which are detected by the single-layer Timepix detector in SATRAM. The current identification method proposed by Gohl et al. (2019) is based on pattern recognition and stopping power measurements. In this article, the limitations of this method are discussed. A new method based on neural network trained with Geant4 data is proposed. Its validation with SATRAM data is presented. Similarly, a neural network trained with Geant4 data is introduced. Its purpose is to deduce the particles' incident energy using the energy deposited in the Timepix.
Název v anglickém jazyce
A new technique based on convolutional neural networks to measure the energy of protons and electrons with a single Timepix detector
Popis výsledku anglicky
The Timepix chip has been exposed to the outer space for the first time with the Space Application of Timepix-based Radiation Monitor (SATRAM) instrument on Project for On-Board Autonomy Vegetation (Proba-V), a European Space Agency's (ESA) satellite. The objective of this study is to develop a new technique to improve the separation of protons and electrons, which are detected by the single-layer Timepix detector in SATRAM. The current identification method proposed by Gohl et al. (2019) is based on pattern recognition and stopping power measurements. In this article, the limitations of this method are discussed. A new method based on neural network trained with Geant4 data is proposed. Its validation with SATRAM data is presented. Similarly, a neural network trained with Geant4 data is introduced. Its purpose is to deduce the particles' incident energy using the energy deposited in the Timepix.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Nuclear Science
ISSN
0018-9499
e-ISSN
1558-1578
Svazek periodika
68
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
1746-1753
Kód UT WoS článku
000687247300030
EID výsledku v databázi Scopus
2-s2.0-85103875554