Hybrid Single Node Genetic Programming for Symbolic Regression
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F16%3A00316259" target="_blank" >RIV/68407700:21730/16:00316259 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/16:00316259
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-662-53525-7_4" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-662-53525-7_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-662-53525-7_4" target="_blank" >10.1007/978-3-662-53525-7_4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hybrid Single Node Genetic Programming for Symbolic Regression
Popis výsledku v původním jazyce
This paper presents a first step of our research on designing an effective and efficient GP-based method for symbolic regression. First, we propose three extensions of the standard Single Node GP, namely (1) a selection strategy for choosing nodes to be mutated based on depth and performance of the nodes, (2) operators for placing a compact version of the best-performing graph to the beginning and to the end of the population, respectively, and (3) a local search strategy with multiple mutations applied in each iteration. All the proposed modifications have been experimentally evaluated on five symbolic regression benchmarks and compared with standard GP and SNGP. The achieved results are promising showing the potential of the proposed modifications to improve the performance of the SNGP algorithm. We then propose two variants of hybrid SNGP utilizing a linear regression technique, LASSO, to improve its performance. The proposed algorithms have been compared to the state-of-the-art symbolic regression methods that also make use of the linear regression techniques on four real-world benchmarks. The results show the hybrid SNGP algorithms are at least competitive with or better than the compared methods. Springer-Verlag Berlin Heidelberg 2016.
Název v anglickém jazyce
Hybrid Single Node Genetic Programming for Symbolic Regression
Popis výsledku anglicky
This paper presents a first step of our research on designing an effective and efficient GP-based method for symbolic regression. First, we propose three extensions of the standard Single Node GP, namely (1) a selection strategy for choosing nodes to be mutated based on depth and performance of the nodes, (2) operators for placing a compact version of the best-performing graph to the beginning and to the end of the population, respectively, and (3) a local search strategy with multiple mutations applied in each iteration. All the proposed modifications have been experimentally evaluated on five symbolic regression benchmarks and compared with standard GP and SNGP. The achieved results are promising showing the potential of the proposed modifications to improve the performance of the SNGP algorithm. We then propose two variants of hybrid SNGP utilizing a linear regression technique, LASSO, to improve its performance. The proposed algorithms have been compared to the state-of-the-art symbolic regression methods that also make use of the linear regression techniques on four real-world benchmarks. The results show the hybrid SNGP algorithms are at least competitive with or better than the compared methods. Springer-Verlag Berlin Heidelberg 2016.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-22731S" target="_blank" >GA15-22731S: Symbolická regrese pro posilované učení ve spojitých prostorech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Transactions on Computational Collective Intelligence XXIV
ISBN
978-3-662-53524-0
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
22
Strana od-do
61-82
Název nakladatele
Springer Berlin Heidelberg
Místo vydání
Berlin
Místo konání akce
Lisabon
Datum konání akce
12. 11. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—