Sparse Support Vector Machine for Intrapartum Fetal Heart Rate Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F17%3A00311953" target="_blank" >RIV/68407700:21730/17:00311953 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/7440787/?reload=true&arnumber=7440787" target="_blank" >http://ieeexplore.ieee.org/document/7440787/?reload=true&arnumber=7440787</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JBHI.2016.2546312" target="_blank" >10.1109/JBHI.2016.2546312</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sparse Support Vector Machine for Intrapartum Fetal Heart Rate Classification
Popis výsledku v původním jazyce
Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. This contribution promotes sparse support vector machine classification that permits to select a small number of relevant features and to achieve efficient fetal acidosis detection. A comprehensive set of features is used for FHR description, including enhanced and computerized clinical features, frequency domain, and scaling and multifractal features, all computed on a large (1288 subjects) and well-documented database. The individual performance obtained for each feature independently is discussed first. Then, it is shown that the automatic selection of a sparse subset of features achieves satisfactory classification performance (sensitivity 0.73 and specificity 0.75, outperforming clinical practice). The subset of selected features (average depth of decelerations MAD(dtrd), baseline level beta(0), and variability H) receives simple interpretation in clinical practice. Intrapartum fetal acidosis detection is improved in several respects: A comprehensive set of features combining clinical, spectral, and scale-free dynamics is used; an original multivariate classification targeting both sparse feature selection and high performance is devised; state-ofthe-art performance is obtained on a much larger database than that generally studied with description of common pitfalls in supervised classification performance assessments.
Název v anglickém jazyce
Sparse Support Vector Machine for Intrapartum Fetal Heart Rate Classification
Popis výsledku anglicky
Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. This contribution promotes sparse support vector machine classification that permits to select a small number of relevant features and to achieve efficient fetal acidosis detection. A comprehensive set of features is used for FHR description, including enhanced and computerized clinical features, frequency domain, and scaling and multifractal features, all computed on a large (1288 subjects) and well-documented database. The individual performance obtained for each feature independently is discussed first. Then, it is shown that the automatic selection of a sparse subset of features achieves satisfactory classification performance (sensitivity 0.73 and specificity 0.75, outperforming clinical practice). The subset of selected features (average depth of decelerations MAD(dtrd), baseline level beta(0), and variability H) receives simple interpretation in clinical practice. Intrapartum fetal acidosis detection is improved in several respects: A comprehensive set of features combining clinical, spectral, and scale-free dynamics is used; an original multivariate classification targeting both sparse feature selection and high performance is devised; state-ofthe-art performance is obtained on a much larger database than that generally studied with description of common pitfalls in supervised classification performance assessments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Journal of Biomedical and Health Informatics
ISSN
2168-2194
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
664-671
Kód UT WoS článku
000401096700010
EID výsledku v databázi Scopus
2-s2.0-85019265771