Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Sparse Support Vector Machine for Intrapartum Fetal Heart Rate Classification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F17%3A00311953" target="_blank" >RIV/68407700:21730/17:00311953 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://ieeexplore.ieee.org/document/7440787/?reload=true&arnumber=7440787" target="_blank" >http://ieeexplore.ieee.org/document/7440787/?reload=true&arnumber=7440787</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/JBHI.2016.2546312" target="_blank" >10.1109/JBHI.2016.2546312</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Sparse Support Vector Machine for Intrapartum Fetal Heart Rate Classification

  • Popis výsledku v původním jazyce

    Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. This contribution promotes sparse support vector machine classification that permits to select a small number of relevant features and to achieve efficient fetal acidosis detection. A comprehensive set of features is used for FHR description, including enhanced and computerized clinical features, frequency domain, and scaling and multifractal features, all computed on a large (1288 subjects) and well-documented database. The individual performance obtained for each feature independently is discussed first. Then, it is shown that the automatic selection of a sparse subset of features achieves satisfactory classification performance (sensitivity 0.73 and specificity 0.75, outperforming clinical practice). The subset of selected features (average depth of decelerations MAD(dtrd), baseline level beta(0), and variability H) receives simple interpretation in clinical practice. Intrapartum fetal acidosis detection is improved in several respects: A comprehensive set of features combining clinical, spectral, and scale-free dynamics is used; an original multivariate classification targeting both sparse feature selection and high performance is devised; state-ofthe-art performance is obtained on a much larger database than that generally studied with description of common pitfalls in supervised classification performance assessments.

  • Název v anglickém jazyce

    Sparse Support Vector Machine for Intrapartum Fetal Heart Rate Classification

  • Popis výsledku anglicky

    Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. This contribution promotes sparse support vector machine classification that permits to select a small number of relevant features and to achieve efficient fetal acidosis detection. A comprehensive set of features is used for FHR description, including enhanced and computerized clinical features, frequency domain, and scaling and multifractal features, all computed on a large (1288 subjects) and well-documented database. The individual performance obtained for each feature independently is discussed first. Then, it is shown that the automatic selection of a sparse subset of features achieves satisfactory classification performance (sensitivity 0.73 and specificity 0.75, outperforming clinical practice). The subset of selected features (average depth of decelerations MAD(dtrd), baseline level beta(0), and variability H) receives simple interpretation in clinical practice. Intrapartum fetal acidosis detection is improved in several respects: A comprehensive set of features combining clinical, spectral, and scale-free dynamics is used; an original multivariate classification targeting both sparse feature selection and high performance is devised; state-ofthe-art performance is obtained on a much larger database than that generally studied with description of common pitfalls in supervised classification performance assessments.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Journal of Biomedical and Health Informatics

  • ISSN

    2168-2194

  • e-ISSN

  • Svazek periodika

    21

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    664-671

  • Kód UT WoS článku

    000401096700010

  • EID výsledku v databázi Scopus

    2-s2.0-85019265771