Sparse learning for Intrapartum fetal heart rate analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F18%3A00324317" target="_blank" >RIV/68407700:21730/18:00324317 - isvavai.cz</a>
Výsledek na webu
<a href="http://iopscience.iop.org/article/10.1088/2057-1976/aabc64" target="_blank" >http://iopscience.iop.org/article/10.1088/2057-1976/aabc64</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/2057-1976/aabc64" target="_blank" >10.1088/2057-1976/aabc64</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sparse learning for Intrapartum fetal heart rate analysis
Popis výsledku v původním jazyce
Fetal Heart Rate (FHR) monitoring is used during delivery for fetal well-being assessment. Classically based on the visual evaluation of FIGO criteria, FHR characterization remains a challenging task that continuously receives intensive research efforts. Intrapartum FHR analysis is further complicated by the two different stages of labor (dilation and active pushing). Research works aimed at devising automated acidosis prediction procedures are either based on designing new advanced signal processing analyses or on efficiently combining a large number of features proposed in the literature. Such multi-feature procedures either rely on a prior feature selection step or end up with decision rules involving long lists of features. This many-feature outcome rule does not permit to easily interpret the decision and is hence not well suited for clinical practice. Machine-learning-based decision-rule assessment is often impaired by the use of different, proprietary and small databases, preventing meaningful comparisons of results reported in the literature. Here, sparse learning is promoted as a way to perform jointly feature selection and acidosis prediction, hence producing an optimal decision rule based on as few features as possible. Making use of a set of 20 features (gathering 'FIGO-like' features, classical spectral features and recently proposed scale-free features), applied to two large-size (respectively sime1800 and sime500 subjects), well-documented databases, collected independently in French and Czech hospitals, the benefits of sparse learning are quantified in terms of: (i) accounting for class imbalance (few acidotic subjects), (ii) producing simple and interpretable decision rules, (iii) evidences for differences between the temporal dynamics of active pushing and dilation stages, and (iv) of validity/generalizability of decision rules learned on one database and applied to the other one.
Název v anglickém jazyce
Sparse learning for Intrapartum fetal heart rate analysis
Popis výsledku anglicky
Fetal Heart Rate (FHR) monitoring is used during delivery for fetal well-being assessment. Classically based on the visual evaluation of FIGO criteria, FHR characterization remains a challenging task that continuously receives intensive research efforts. Intrapartum FHR analysis is further complicated by the two different stages of labor (dilation and active pushing). Research works aimed at devising automated acidosis prediction procedures are either based on designing new advanced signal processing analyses or on efficiently combining a large number of features proposed in the literature. Such multi-feature procedures either rely on a prior feature selection step or end up with decision rules involving long lists of features. This many-feature outcome rule does not permit to easily interpret the decision and is hence not well suited for clinical practice. Machine-learning-based decision-rule assessment is often impaired by the use of different, proprietary and small databases, preventing meaningful comparisons of results reported in the literature. Here, sparse learning is promoted as a way to perform jointly feature selection and acidosis prediction, hence producing an optimal decision rule based on as few features as possible. Making use of a set of 20 features (gathering 'FIGO-like' features, classical spectral features and recently proposed scale-free features), applied to two large-size (respectively sime1800 and sime500 subjects), well-documented databases, collected independently in French and Czech hospitals, the benefits of sparse learning are quantified in terms of: (i) accounting for class imbalance (few acidotic subjects), (ii) producing simple and interpretable decision rules, (iii) evidences for differences between the temporal dynamics of active pushing and dilation stages, and (iv) of validity/generalizability of decision rules learned on one database and applied to the other one.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biomedical Physics & Engineering Express
ISSN
2057-1976
e-ISSN
2057-1976
Svazek periodika
4
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
000434520900004
EID výsledku v databázi Scopus
2-s2.0-85047266507