Multimodal Breathing Analysis in the Evaluation of Physical Load
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F17%3A00318566" target="_blank" >RIV/68407700:21730/17:00318566 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22340/17:43914784
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/8096050/" target="_blank" >http://ieeexplore.ieee.org/document/8096050/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICDSP.2017.8096050" target="_blank" >10.1109/ICDSP.2017.8096050</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multimodal Breathing Analysis in the Evaluation of Physical Load
Popis výsledku v původním jazyce
The paper presents specific methods of processing of multimodal data recorded during physical activities by depth MS Kinect cameras, thermal imaging cameras and heart rate sensors. All video data and heart rate signals used in the present study were recorded in the home environment. The proposed methodology includes the detection of the chest breathing area for breathing motion analysis used by the MS Kinect. For the thermal image processing the static and dynamic selection of regions of interests was performed in associated sets of images to find time evolution of respiratory signals and their temperature changes. Signal de-noising by finite impulse filters is applied both for breathing and heart rate data. Correlation analysis is used in the data processing stage to find the time relation between individual physiological variables. Results include relations between signals acquired during physical activities and they show how simple sensors can be used to increase the accuracy of standard diagnostical tools in biomedicine as well.
Název v anglickém jazyce
Multimodal Breathing Analysis in the Evaluation of Physical Load
Popis výsledku anglicky
The paper presents specific methods of processing of multimodal data recorded during physical activities by depth MS Kinect cameras, thermal imaging cameras and heart rate sensors. All video data and heart rate signals used in the present study were recorded in the home environment. The proposed methodology includes the detection of the chest breathing area for breathing motion analysis used by the MS Kinect. For the thermal image processing the static and dynamic selection of regions of interests was performed in associated sets of images to find time evolution of respiratory signals and their temperature changes. Signal de-noising by finite impulse filters is applied both for breathing and heart rate data. Correlation analysis is used in the data processing stage to find the time relation between individual physiological variables. Results include relations between signals acquired during physical activities and they show how simple sensors can be used to increase the accuracy of standard diagnostical tools in biomedicine as well.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2017 22nd International Conference on Digital Signal Processing (DSP)
ISBN
978-1-5386-1895-0
ISSN
—
e-ISSN
2165-3577
Počet stran výsledku
4
Strana od-do
—
Název nakladatele
American Institute of Physics and Magnetic Society of the IEEE
Místo vydání
San Francisco
Místo konání akce
London
Datum konání akce
23. 8. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000426874700016