Multimodal breathing analysis in the evaluation of physical load
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F17%3A63516824" target="_blank" >RIV/70883521:28140/17:63516824 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/abstract/document/8096050/" target="_blank" >http://ieeexplore.ieee.org/abstract/document/8096050/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICDSP.2017.8096050" target="_blank" >10.1109/ICDSP.2017.8096050</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multimodal breathing analysis in the evaluation of physical load
Popis výsledku v původním jazyce
The paper presents specific methods of processing of multimodal data recorded during physical activities by depth MS Kinect cameras, thermal imaging cameras and heart rate sensors. All video data and heart rate signals used in the present study were recorded in the home environment. The proposed methodology includes the detection of the chest breathing area for breathing motion analysis used by the MS Kinect. For the thermal image processing the static and dynamic selection of regions of interests was performed in associated sets of images to find time evolution of respiratory signals and their temperature changes. Signal de-noising by finite impulse filters is applied both for breathing and heart rate data. Correlation analysis is used in the data processing stage to find the time relation between individual physiological variables. Results include relations between signals acquired during physical activities and they show how simple sensors can be used to increase the accuracy of standard diagnostical tools in biomedicine as well.
Název v anglickém jazyce
Multimodal breathing analysis in the evaluation of physical load
Popis výsledku anglicky
The paper presents specific methods of processing of multimodal data recorded during physical activities by depth MS Kinect cameras, thermal imaging cameras and heart rate sensors. All video data and heart rate signals used in the present study were recorded in the home environment. The proposed methodology includes the detection of the chest breathing area for breathing motion analysis used by the MS Kinect. For the thermal image processing the static and dynamic selection of regions of interests was performed in associated sets of images to find time evolution of respiratory signals and their temperature changes. Signal de-noising by finite impulse filters is applied both for breathing and heart rate data. Correlation analysis is used in the data processing stage to find the time relation between individual physiological variables. Results include relations between signals acquired during physical activities and they show how simple sensors can be used to increase the accuracy of standard diagnostical tools in biomedicine as well.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Digital Signal Processing (DSP), 2017 22nd International Conference on Digital Signal Processing
ISBN
978-1-5386-1896-7
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
4
Strana od-do
1-4
Název nakladatele
IEEE
Místo vydání
London
Místo konání akce
Londýn
Datum konání akce
23. 8. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—