24/7 Place Recognition by View Synthesis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F18%3A00319486" target="_blank" >RIV/68407700:21730/18:00319486 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/TPAMI.2017.2667665" target="_blank" >http://dx.doi.org/10.1109/TPAMI.2017.2667665</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TPAMI.2017.2667665" target="_blank" >10.1109/TPAMI.2017.2667665</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
24/7 Place Recognition by View Synthesis
Popis výsledku v původním jazyce
We address the problem of large-scale visual place recognition for situations where the scene undergoes a major change in appearance, for example, due to illumination (day/night), change of seasons, aging, or structural modifications over time such as buildings being built or destroyed. Such situations represent a major challenge for current large-scale place recognition methods. This work has the following three principal contributions. First, we demonstrate that matching across large changes in the scene appearance becomes much easier when both the query image and the database image depict the scene from approximately the same viewpoint. Second, based on this observation, we develop a new place recognition approach that combines (i) an efficient synthesis of novel views with (ii) a compact indexable image representation. Third, we introduce a new challenging dataset of 1,125 camera-phone query images of Tokyo that contain major changes in illumination (day, sunset, night) as well as structural changes in the scene. We demonstrate that the proposed approach significantly outperforms other large-scale place recognition techniques on this challenging data.
Název v anglickém jazyce
24/7 Place Recognition by View Synthesis
Popis výsledku anglicky
We address the problem of large-scale visual place recognition for situations where the scene undergoes a major change in appearance, for example, due to illumination (day/night), change of seasons, aging, or structural modifications over time such as buildings being built or destroyed. Such situations represent a major challenge for current large-scale place recognition methods. This work has the following three principal contributions. First, we demonstrate that matching across large changes in the scene appearance becomes much easier when both the query image and the database image depict the scene from approximately the same viewpoint. Second, based on this observation, we develop a new place recognition approach that combines (i) an efficient synthesis of novel views with (ii) a compact indexable image representation. Third, we introduce a new challenging dataset of 1,125 camera-phone query images of Tokyo that contain major changes in illumination (day, sunset, night) as well as structural changes in the scene. We demonstrate that the proposed approach significantly outperforms other large-scale place recognition techniques on this challenging data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN
0162-8828
e-ISSN
1939-3539
Svazek periodika
40
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
257-271
Kód UT WoS článku
000422706000001
EID výsledku v databázi Scopus
2-s2.0-85040690730