Leveraging the Present to Anticipate the Future in Videos
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F19%3A00340394" target="_blank" >RIV/68407700:21730/19:00340394 - isvavai.cz</a>
Výsledek na webu
<a href="http://openaccess.thecvf.com/content_CVPRW_2019/papers/Precognition/Miech_Leveraging_the_Present_to_Anticipate_the_Future_in_Videos_CVPRW_2019_paper.pdf" target="_blank" >http://openaccess.thecvf.com/content_CVPRW_2019/papers/Precognition/Miech_Leveraging_the_Present_to_Anticipate_the_Future_in_Videos_CVPRW_2019_paper.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Leveraging the Present to Anticipate the Future in Videos
Popis výsledku v původním jazyce
Anticipating actions before they are executed is crucial for a wide range of practical applications including autonomous driving and robotics. While most prior work in this area requires partial observation of executed actions, in the paper, we focus on anticipating actions seconds before they start. Our proposed approach is the fusion of a purely anticipatory model with a complementary model constrained to reason about the present. In particular, the latter predicts present action and scene attributes, and reasons about how they evolve over time. By doing so, we aim at modelling action anticipation at a more conceptual level than directly predicting future actions. Our model outperforms previously reported methods on the EPIC-KITCHENS and Breakfast datasets.
Název v anglickém jazyce
Leveraging the Present to Anticipate the Future in Videos
Popis výsledku anglicky
Anticipating actions before they are executed is crucial for a wide range of practical applications including autonomous driving and robotics. While most prior work in this area requires partial observation of executed actions, in the paper, we focus on anticipating actions seconds before they start. Our proposed approach is the fusion of a purely anticipatory model with a complementary model constrained to reason about the present. In particular, the latter predicts present action and scene attributes, and reasons about how they evolve over time. By doing so, we aim at modelling action anticipation at a more conceptual level than directly predicting future actions. Our model outperforms previously reported methods on the EPIC-KITCHENS and Breakfast datasets.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů