Semi-supervised training data selection improves seizure forecasting in canines with epilepsy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F20%3A00346819" target="_blank" >RIV/68407700:21730/20:00346819 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.bspc.2019.101743" target="_blank" >https://doi.org/10.1016/j.bspc.2019.101743</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bspc.2019.101743" target="_blank" >10.1016/j.bspc.2019.101743</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semi-supervised training data selection improves seizure forecasting in canines with epilepsy
Popis výsledku v původním jazyce
Objective: Conventional selection of pre-ictal EEG epochs for seizure prediction algorithm training datatypically assumes a continuous pre-ictal brain state preceding a seizure. This is carried out by defin-ing a fixed duration, pre-ictal time period before seizures from which pre-ictal training data epochs areuniformly sampled. However, stochastic physiological and pathological fluctuations in EEG data char-acteristics and underlying brain states suggest that pre-ictal state dynamics may be more complex, andselection of pre-ictal training data segments to reflect this could improve algorithm performance.Methods: We propose a semi-supervised technique to select pre-ictal training data most distinguishablefrom interictal EEG according to pre-specified data characteristics. The proposed method uses hierarchicalclustering to identify optimal pre-ictal data epochs.Results: In this paper we compare the performance of a seizure forecasting algorithm with and withouthierarchical clustering of pre-ictal periods in chronic iEEG recordings from six canines with naturallyoccurring epilepsy. Hierarchical clustering of training data improved results for Time In Warning (TIW)(0.18 vs. 0.23) and False Positive Rate (FPR) (0.5 vs. 0.59) when evaluated across all subjects (p < 0.001,n = 6). Results were mixed when evaluating TIW, FPR, and Sensitivity for individual dogs.Conclusion: Hierarchical clustering is a helpful method for training data selection overall, but should beevaluated on a subject-wise basis.Significance: The clustering method can be used to optimize results of forecasting towards sensitivity orTIW or FPR, and therefore can be useful for epilepsy management.
Název v anglickém jazyce
Semi-supervised training data selection improves seizure forecasting in canines with epilepsy
Popis výsledku anglicky
Objective: Conventional selection of pre-ictal EEG epochs for seizure prediction algorithm training datatypically assumes a continuous pre-ictal brain state preceding a seizure. This is carried out by defin-ing a fixed duration, pre-ictal time period before seizures from which pre-ictal training data epochs areuniformly sampled. However, stochastic physiological and pathological fluctuations in EEG data char-acteristics and underlying brain states suggest that pre-ictal state dynamics may be more complex, andselection of pre-ictal training data segments to reflect this could improve algorithm performance.Methods: We propose a semi-supervised technique to select pre-ictal training data most distinguishablefrom interictal EEG according to pre-specified data characteristics. The proposed method uses hierarchicalclustering to identify optimal pre-ictal data epochs.Results: In this paper we compare the performance of a seizure forecasting algorithm with and withouthierarchical clustering of pre-ictal periods in chronic iEEG recordings from six canines with naturallyoccurring epilepsy. Hierarchical clustering of training data improved results for Time In Warning (TIW)(0.18 vs. 0.23) and False Positive Rate (FPR) (0.5 vs. 0.59) when evaluated across all subjects (p < 0.001,n = 6). Results were mixed when evaluating TIW, FPR, and Sensitivity for individual dogs.Conclusion: Hierarchical clustering is a helpful method for training data selection overall, but should beevaluated on a subject-wise basis.Significance: The clustering method can be used to optimize results of forecasting towards sensitivity orTIW or FPR, and therefore can be useful for epilepsy management.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biomedical Signal Processing and Control
ISSN
1746-8094
e-ISSN
1746-8108
Svazek periodika
57
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
—
Kód UT WoS článku
000512481800017
EID výsledku v databázi Scopus
2-s2.0-85074854563