Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Semi-supervised training data selection improves seizure forecasting in canines with epilepsy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F20%3A00346819" target="_blank" >RIV/68407700:21730/20:00346819 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.bspc.2019.101743" target="_blank" >https://doi.org/10.1016/j.bspc.2019.101743</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.bspc.2019.101743" target="_blank" >10.1016/j.bspc.2019.101743</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Semi-supervised training data selection improves seizure forecasting in canines with epilepsy

  • Popis výsledku v původním jazyce

    Objective: Conventional selection of pre-ictal EEG epochs for seizure prediction algorithm training datatypically assumes a continuous pre-ictal brain state preceding a seizure. This is carried out by defin-ing a fixed duration, pre-ictal time period before seizures from which pre-ictal training data epochs areuniformly sampled. However, stochastic physiological and pathological fluctuations in EEG data char-acteristics and underlying brain states suggest that pre-ictal state dynamics may be more complex, andselection of pre-ictal training data segments to reflect this could improve algorithm performance.Methods: We propose a semi-supervised technique to select pre-ictal training data most distinguishablefrom interictal EEG according to pre-specified data characteristics. The proposed method uses hierarchicalclustering to identify optimal pre-ictal data epochs.Results: In this paper we compare the performance of a seizure forecasting algorithm with and withouthierarchical clustering of pre-ictal periods in chronic iEEG recordings from six canines with naturallyoccurring epilepsy. Hierarchical clustering of training data improved results for Time In Warning (TIW)(0.18 vs. 0.23) and False Positive Rate (FPR) (0.5 vs. 0.59) when evaluated across all subjects (p < 0.001,n = 6). Results were mixed when evaluating TIW, FPR, and Sensitivity for individual dogs.Conclusion: Hierarchical clustering is a helpful method for training data selection overall, but should beevaluated on a subject-wise basis.Significance: The clustering method can be used to optimize results of forecasting towards sensitivity orTIW or FPR, and therefore can be useful for epilepsy management.

  • Název v anglickém jazyce

    Semi-supervised training data selection improves seizure forecasting in canines with epilepsy

  • Popis výsledku anglicky

    Objective: Conventional selection of pre-ictal EEG epochs for seizure prediction algorithm training datatypically assumes a continuous pre-ictal brain state preceding a seizure. This is carried out by defin-ing a fixed duration, pre-ictal time period before seizures from which pre-ictal training data epochs areuniformly sampled. However, stochastic physiological and pathological fluctuations in EEG data char-acteristics and underlying brain states suggest that pre-ictal state dynamics may be more complex, andselection of pre-ictal training data segments to reflect this could improve algorithm performance.Methods: We propose a semi-supervised technique to select pre-ictal training data most distinguishablefrom interictal EEG according to pre-specified data characteristics. The proposed method uses hierarchicalclustering to identify optimal pre-ictal data epochs.Results: In this paper we compare the performance of a seizure forecasting algorithm with and withouthierarchical clustering of pre-ictal periods in chronic iEEG recordings from six canines with naturallyoccurring epilepsy. Hierarchical clustering of training data improved results for Time In Warning (TIW)(0.18 vs. 0.23) and False Positive Rate (FPR) (0.5 vs. 0.59) when evaluated across all subjects (p < 0.001,n = 6). Results were mixed when evaluating TIW, FPR, and Sensitivity for individual dogs.Conclusion: Hierarchical clustering is a helpful method for training data selection overall, but should beevaluated on a subject-wise basis.Significance: The clustering method can be used to optimize results of forecasting towards sensitivity orTIW or FPR, and therefore can be useful for epilepsy management.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Biomedical Signal Processing and Control

  • ISSN

    1746-8094

  • e-ISSN

    1746-8108

  • Svazek periodika

    57

  • Číslo periodika v rámci svazku

    March

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    7

  • Strana od-do

  • Kód UT WoS článku

    000512481800017

  • EID výsledku v databázi Scopus

    2-s2.0-85074854563