Using Image Sequences for Long-Term Visual Localization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F20%3A00347057" target="_blank" >RIV/68407700:21730/20:00347057 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/3DV50981.2020.00104" target="_blank" >https://doi.org/10.1109/3DV50981.2020.00104</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/3DV50981.2020.00104" target="_blank" >10.1109/3DV50981.2020.00104</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using Image Sequences for Long-Term Visual Localization
Popis výsledku v původním jazyce
Estimating the pose of a camera in a known scene, i.e., visual localization, is a core task for applications such as self-driving cars. In many scenarios, image sequences are available and existing work on combining single-image localization with odometry offers to unlock their potential for improving localization performance. Still, the largest part of the literature focuses on single-image localization and ignores the availability of sequence data. The goal of this paper is to demonstrate the potential of image sequences in challenging scenarios, e.g., under day-night or seasonal changes. Combining ideas from the literature, we describe a sequence-based localization pipeline that combines odometry with both a coarse and a fine localization module. Experiments on long-term localization datasets show that combining single-image global localization against a prebuilt map with a visual odometry / SLAM pipeline improves performance to a level where the extended CMU Seasons dataset can be considered solved. We show that SIFT features can perform on par with modern state-of-the-art features in our framework, despite being much weaker and a magnitude faster to compute. Our code is publicly available at github.com/rulllars.
Název v anglickém jazyce
Using Image Sequences for Long-Term Visual Localization
Popis výsledku anglicky
Estimating the pose of a camera in a known scene, i.e., visual localization, is a core task for applications such as self-driving cars. In many scenarios, image sequences are available and existing work on combining single-image localization with odometry offers to unlock their potential for improving localization performance. Still, the largest part of the literature focuses on single-image localization and ignores the availability of sequence data. The goal of this paper is to demonstrate the potential of image sequences in challenging scenarios, e.g., under day-night or seasonal changes. Combining ideas from the literature, we describe a sequence-based localization pipeline that combines odometry with both a coarse and a fine localization module. Experiments on long-term localization datasets show that combining single-image global localization against a prebuilt map with a visual odometry / SLAM pipeline improves performance to a level where the extended CMU Seasons dataset can be considered solved. We show that SIFT features can perform on par with modern state-of-the-art features in our framework, despite being much weaker and a magnitude faster to compute. Our code is publicly available at github.com/rulllars.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 International Conference on 3D Vision (3DV)
ISBN
978-1-7281-8128-8
ISSN
2378-3826
e-ISSN
2475-7888
Počet stran výsledku
11
Strana od-do
938-948
Název nakladatele
IEEE Computer Soc.
Místo vydání
Los Alamitos, CA
Místo konání akce
Kyoto
Datum konání akce
25. 11. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000653085200095