Benchmarking Image Retrieval for Visual Localization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F20%3A00347058" target="_blank" >RIV/68407700:21730/20:00347058 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/3DV50981.2020.00058" target="_blank" >https://doi.org/10.1109/3DV50981.2020.00058</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/3DV50981.2020.00058" target="_blank" >10.1109/3DV50981.2020.00058</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Benchmarking Image Retrieval for Visual Localization
Popis výsledku v původním jazyce
Visual localization, i.e., camera pose estimation in a known scene, is a core component of technologies such as autonomous driving and augmented reality. State-of-the-art localization approaches often rely on image retrieval techniques for one of two tasks: (1) provide an approximate pose estimate or (2) determine which parts of the scene are potentially visible in a given query image. It is common practice to use state-of-the-art image retrieval algorithms for these tasks. These algorithms are often trained for the goal of retrieving the same landmark under a large range of viewpoint changes. However, robustness to viewpoint changes is not necessarily desirable in the context of visual localization. This paper focuses on understanding the role of image retrieval for multiple visual localization tasks. We introduce a benchmark setup and compare state-of-the-art retrieval representations on multiple datasets. We show that retrieval performance on classical landmark retrieval/recognition tasks correlates only for some but not all tasks to localization performance. This indicates a need for retrieval approaches specifically designed for localization tasks. Our benchmark and evaluation protocols are available at https://github.com/naver/kapture-localization.
Název v anglickém jazyce
Benchmarking Image Retrieval for Visual Localization
Popis výsledku anglicky
Visual localization, i.e., camera pose estimation in a known scene, is a core component of technologies such as autonomous driving and augmented reality. State-of-the-art localization approaches often rely on image retrieval techniques for one of two tasks: (1) provide an approximate pose estimate or (2) determine which parts of the scene are potentially visible in a given query image. It is common practice to use state-of-the-art image retrieval algorithms for these tasks. These algorithms are often trained for the goal of retrieving the same landmark under a large range of viewpoint changes. However, robustness to viewpoint changes is not necessarily desirable in the context of visual localization. This paper focuses on understanding the role of image retrieval for multiple visual localization tasks. We introduce a benchmark setup and compare state-of-the-art retrieval representations on multiple datasets. We show that retrieval performance on classical landmark retrieval/recognition tasks correlates only for some but not all tasks to localization performance. This indicates a need for retrieval approaches specifically designed for localization tasks. Our benchmark and evaluation protocols are available at https://github.com/naver/kapture-localization.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 International Conference on 3D Vision (3DV)
ISBN
978-1-7281-8128-8
ISSN
2378-3826
e-ISSN
2475-7888
Počet stran výsledku
12
Strana od-do
483-494
Název nakladatele
IEEE Computer Soc.
Místo vydání
Los Alamitos, CA
Místo konání akce
Kyoto
Datum konání akce
25. 11. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000653085200049