Highly Robust Visual Place Recognition Through Spatial Matching of CNN Features
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F20%3A00348828" target="_blank" >RIV/68407700:21730/20:00348828 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICRA40945.2020.9196967" target="_blank" >https://doi.org/10.1109/ICRA40945.2020.9196967</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICRA40945.2020.9196967" target="_blank" >10.1109/ICRA40945.2020.9196967</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Highly Robust Visual Place Recognition Through Spatial Matching of CNN Features
Popis výsledku v původním jazyce
We revise, improve and extend the system previously introduced by us and named SSM-VPR (Semantic and Spatial Matching Visual Place Recognition), largely boosting its performance above the current state of the art. The system encodes images of places by employing the activations of different layers of a pre-trained, off-the-shelf, VGG16 Convolutional Neural Network (CNN) architecture. It consists of two stages: given a query image of a place, (1) a list of candidates is selected from a database of places and (2) the candidates are geometrically compared with the query. The comparison is made by matching CNN features and, equally important, their spatial locations, selecting the best candidate as the recognized place. The performance of the system is maximized by finding optimal image resolutions during the second stage and by exploiting temporal correlation between consecutive frames in the employed datasets.
Název v anglickém jazyce
Highly Robust Visual Place Recognition Through Spatial Matching of CNN Features
Popis výsledku anglicky
We revise, improve and extend the system previously introduced by us and named SSM-VPR (Semantic and Spatial Matching Visual Place Recognition), largely boosting its performance above the current state of the art. The system encodes images of places by employing the activations of different layers of a pre-trained, off-the-shelf, VGG16 Convolutional Neural Network (CNN) architecture. It consists of two stages: given a query image of a place, (1) a list of candidates is selected from a database of places and (2) the candidates are geometrically compared with the query. The comparison is made by matching CNN features and, equally important, their spatial locations, selecting the best candidate as the recognized place. The performance of the system is maximized by finding optimal image resolutions during the second stage and by exploiting temporal correlation between consecutive frames in the employed datasets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000470" target="_blank" >EF15_003/0000470: Robotika pro Průmysl 4.0</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IEEE International Conference on Robotics and Automation (ICRA)
ISBN
978-1-7281-7395-5
ISSN
1050-4729
e-ISSN
2577-087X
Počet stran výsledku
8
Strana od-do
3748-3755
Název nakladatele
IEEE Xplore
Místo vydání
—
Místo konání akce
Paris
Datum konání akce
31. 5. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000712319502086