II-20: Intelligent and pragmatic analytic categorization of image collections
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00344308" target="_blank" >RIV/68407700:21730/21:00344308 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TVCG.2020.3030383" target="_blank" >https://doi.org/10.1109/TVCG.2020.3030383</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TVCG.2020.3030383" target="_blank" >10.1109/TVCG.2020.3030383</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
II-20: Intelligent and pragmatic analytic categorization of image collections
Popis výsledku v původním jazyce
In this paper, we introduce II-20 (Image Insight 2020), a multimedia analytics approach for analytic categorization of image collections. Advanced visualizations for image collections exist, but they need tight integration with a machine model to support the task of analytic categorization. Directly employing computer vision and interactive learning techniques gravitates towards search. Analytic categorization, however, is not machine classification (the difference between the two is called the pragmatic gap): a human adds/redefines/deletes categories of relevance on the fly to build insight, whereas the machine classifier is rigid and non-adaptive. Analytic categorization that truly brings the user to insight requires a flexible machine model that allows dynamic sliding on the exploration-search axis, as well as semantic interactions: a human thinks about image data mostly in semantic terms. II-20 brings three major contributions to multimedia analytics on image collections and towards closing the pragmatic gap. Firstly, a new machine model that closely follows the user's interactions and dynamically models her categories of relevance. II-20's machine model, in addition to matching and exceeding the state of the art's ability to produce relevant suggestions, allows the user to dynamically slide on the exploration-search axis without any additional input from her side. Secondly, the dynamic, 1-image-at-a-time Tetris metaphor that synergizes with the model. It allows a well-trained model to analyze the collection by itself with minimal interaction from the user and complements the classic grid metaphor. Thirdly, the fast-forward interaction, allowing the user to harness the model to quickly expand ("fast-forward") the categories of relevance, expands the multimedia analytics semantic interaction dictionary. Automated experiments show that II-20's machine model outperforms the existing state of the art and also demonstrate the Tetris metaphor's analytic quality.
Název v anglickém jazyce
II-20: Intelligent and pragmatic analytic categorization of image collections
Popis výsledku anglicky
In this paper, we introduce II-20 (Image Insight 2020), a multimedia analytics approach for analytic categorization of image collections. Advanced visualizations for image collections exist, but they need tight integration with a machine model to support the task of analytic categorization. Directly employing computer vision and interactive learning techniques gravitates towards search. Analytic categorization, however, is not machine classification (the difference between the two is called the pragmatic gap): a human adds/redefines/deletes categories of relevance on the fly to build insight, whereas the machine classifier is rigid and non-adaptive. Analytic categorization that truly brings the user to insight requires a flexible machine model that allows dynamic sliding on the exploration-search axis, as well as semantic interactions: a human thinks about image data mostly in semantic terms. II-20 brings three major contributions to multimedia analytics on image collections and towards closing the pragmatic gap. Firstly, a new machine model that closely follows the user's interactions and dynamically models her categories of relevance. II-20's machine model, in addition to matching and exceeding the state of the art's ability to produce relevant suggestions, allows the user to dynamically slide on the exploration-search axis without any additional input from her side. Secondly, the dynamic, 1-image-at-a-time Tetris metaphor that synergizes with the model. It allows a well-trained model to analyze the collection by itself with minimal interaction from the user and complements the classic grid metaphor. Thirdly, the fast-forward interaction, allowing the user to harness the model to quickly expand ("fast-forward") the categories of relevance, expands the multimedia analytics semantic interaction dictionary. Automated experiments show that II-20's machine model outperforms the existing state of the art and also demonstrate the Tetris metaphor's analytic quality.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000470" target="_blank" >EF15_003/0000470: Robotika pro Průmysl 4.0</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Visualization and Computer Graphics
ISSN
1077-2626
e-ISSN
1941-0506
Svazek periodika
27
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
422-431
Kód UT WoS článku
000706330100030
EID výsledku v databázi Scopus
2-s2.0-85100415947