Known-Item Search in Video: An Eye Tracking-Based Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490637" target="_blank" >RIV/00216208:11320/24:10490637 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3652583.3658119" target="_blank" >https://doi.org/10.1145/3652583.3658119</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3652583.3658119" target="_blank" >10.1145/3652583.3658119</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Known-Item Search in Video: An Eye Tracking-Based Study
Popis výsledku v původním jazyce
Deep learning has revolutionized multimedia retrieval, yet effectively searching within large video collections remains a complex challenge. This paper focuses on the design and evaluation of known-item search systems, leveraging the strengths of CLIP-based deep neural networks for ranking. At events like the Video Browser Showdown, these models have shown promise in effectively ranking the video frames. While ranking models can be pre-selected automatically based on a benchmark collection, the selection of an optimal browsing interface, crucial for refining top-ranked items, is complex and heavily influenced by user behavior. Our study addresses this by presenting an eye tracking-based analysis of user interaction with different image grid layouts. This approach offers novel insights into search patterns and user preferences, particularly examining the trade-off between displaying fewer but larger images versus more but smaller images. Our findings reveal a preference for grids with fewer images and detail how image similarity and grid position affect user search behavior. These results not only enhance our understanding of effective video retrieval interface design but also set the stage for future advancements in the field.
Název v anglickém jazyce
Known-Item Search in Video: An Eye Tracking-Based Study
Popis výsledku anglicky
Deep learning has revolutionized multimedia retrieval, yet effectively searching within large video collections remains a complex challenge. This paper focuses on the design and evaluation of known-item search systems, leveraging the strengths of CLIP-based deep neural networks for ranking. At events like the Video Browser Showdown, these models have shown promise in effectively ranking the video frames. While ranking models can be pre-selected automatically based on a benchmark collection, the selection of an optimal browsing interface, crucial for refining top-ranked items, is complex and heavily influenced by user behavior. Our study addresses this by presenting an eye tracking-based analysis of user interaction with different image grid layouts. This approach offers novel insights into search patterns and user preferences, particularly examining the trade-off between displaying fewer but larger images versus more but smaller images. Our findings reveal a preference for grids with fewer images and detail how image similarity and grid position affect user search behavior. These results not only enhance our understanding of effective video retrieval interface design but also set the stage for future advancements in the field.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-21696S" target="_blank" >GA22-21696S: Hluboké vizuální reprezentace nestrukturovaných dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
PROCEEDINGS OF THE 14TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024
ISBN
979-8-4007-0619-6
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
311-319
Název nakladatele
ASSOC COMPUTING MACHINERY
Místo vydání
NEW YORK
Místo konání akce
Phuket
Datum konání akce
10. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001282078400035