What Is the Role of Similarity for Known-Item Search at Video Browser Showdown?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10383340" target="_blank" >RIV/00216208:11320/18:10383340 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-02224-2_8" target="_blank" >http://dx.doi.org/10.1007/978-3-030-02224-2_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-02224-2_8" target="_blank" >10.1007/978-3-030-02224-2_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
What Is the Role of Similarity for Known-Item Search at Video Browser Showdown?
Popis výsledku v původním jazyce
Across many domains, machine learning approaches start to compete with human experts in tasks originally considered as very difficult for automation. However, effective retrieval of general video shots still represents an issue due to their variability, complexity and insufficiency of training sets. In addition, users can face problems trying to formulate their search intents in a given query interface. Hence, many systems still rely also on interactive human-machine cooperation to boost effectiveness of the retrieval process. In this paper, we present our experience with known-item search tasks in the Video Browser Showdown competition, where participating interactive video retrieval systems mostly rely on various similarity models. We discuss the observed difficulty of known-item search tasks, categorize employed interaction components (relying on similarity models) and inspect successful interactive known-item searches from the recent iteration of the competition. Finally, open similarity search challenges for known-item search in video are presented.
Název v anglickém jazyce
What Is the Role of Similarity for Known-Item Search at Video Browser Showdown?
Popis výsledku anglicky
Across many domains, machine learning approaches start to compete with human experts in tasks originally considered as very difficult for automation. However, effective retrieval of general video shots still represents an issue due to their variability, complexity and insufficiency of training sets. In addition, users can face problems trying to formulate their search intents in a given query interface. Hence, many systems still rely also on interactive human-machine cooperation to boost effectiveness of the retrieval process. In this paper, we present our experience with known-item search tasks in the Video Browser Showdown competition, where participating interactive video retrieval systems mostly rely on various similarity models. We discuss the observed difficulty of known-item search tasks, categorize employed interaction components (relying on similarity models) and inspect successful interactive known-item searches from the recent iteration of the competition. Finally, open similarity search challenges for known-item search in video are presented.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-22224S" target="_blank" >GA17-22224S: Analytika uživatelských preferencí v modelech multimediální explorace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science
ISBN
978-3-030-02223-5
ISSN
0302-9743
e-ISSN
neuvedeno
Počet stran výsledku
9
Strana od-do
96-104
Název nakladatele
Springer Verlag
Místo vydání
Switzerland
Místo konání akce
Lima, Peru
Datum konání akce
7. 10. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—