A Framework for Effective Known-item Search in Video
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401600" target="_blank" >RIV/00216208:11320/19:10401600 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3343031.3351046" target="_blank" >https://doi.org/10.1145/3343031.3351046</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3343031.3351046" target="_blank" >10.1145/3343031.3351046</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Framework for Effective Known-item Search in Video
Popis výsledku v původním jazyce
Searching for one particular scene in a large video collection (known-item search) represents a challenging task for video retrieval systems. According to the recent results reached at evaluation campaigns, even respected approaches based on machine learning do not help to solve the task easily in many cases. Hence, in addition to effective automatic multimedia annotation and embedding, interactive search is recommended as well. This paper presents a comprehensive description of an interactive video retrieval framework VIRET that successfully participated at several recent evaluation campaigns. Utilized video analysis, feature extraction and retrieval models are detailed as well as several experiments evaluating effectiveness of selected system components. The results of the prototype at the Video Browser Showdown 2019 are highlighted in connection with an analysis of collected query logs. We conclude that the framework comprise a set of effective and efficient models for most of the evaluated known-item search tasks in 1000 hours of video and could serve as a baseline reference approach. The analysis also reveals that the result presentation interface needs improvements for better performance of future VIRET prototypes.
Název v anglickém jazyce
A Framework for Effective Known-item Search in Video
Popis výsledku anglicky
Searching for one particular scene in a large video collection (known-item search) represents a challenging task for video retrieval systems. According to the recent results reached at evaluation campaigns, even respected approaches based on machine learning do not help to solve the task easily in many cases. Hence, in addition to effective automatic multimedia annotation and embedding, interactive search is recommended as well. This paper presents a comprehensive description of an interactive video retrieval framework VIRET that successfully participated at several recent evaluation campaigns. Utilized video analysis, feature extraction and retrieval models are detailed as well as several experiments evaluating effectiveness of selected system components. The results of the prototype at the Video Browser Showdown 2019 are highlighted in connection with an analysis of collected query logs. We conclude that the framework comprise a set of effective and efficient models for most of the evaluated known-item search tasks in 1000 hours of video and could serve as a baseline reference approach. The analysis also reveals that the result presentation interface needs improvements for better performance of future VIRET prototypes.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-22071Y" target="_blank" >GJ19-22071Y: Flexibilní modely pro hledání známé scény v rozsáhlých kolekcích videa</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 27th ACM International Conference on Multimedia
ISBN
978-1-4503-6889-6
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
1777-1785
Název nakladatele
ACM
Místo vydání
New York, NY, USA
Místo konání akce
Nice, France
Datum konání akce
21. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—