How to Approximate Leximax-optimal Solutions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00354101" target="_blank" >RIV/68407700:21730/21:00354101 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How to Approximate Leximax-optimal Solutions
Popis výsledku v původním jazyce
Many real-world problems can be modelled as Multi-Objective Combinatorial Opti misation (MOCO) problems. In the multi-objective case, there is not a single optimum value but a set of optima known as Pareto-optima. However, the number of Pareto-optima can be too large to enumerate. Instead, one can compute a minimum Pareto-optimum according to an order. The leximax order selects a Pareto-optimum such that the objec tive functions with the worst values are penalised the least. Unlike other orders, such as the lexicographic order or the weighted sum order, the leximax order does not favour any objective function at the expense of others. Also, the leximax-optimum has a guaranteed small trade-off between the objective functions. In some real-world MOCO problems, the time to find a solution may be limited and computing a leximax-optimal solution may take too long. In such problems, we search for solutions that can be computed in the given admissible amount of time and that are as close to the leximax-optimum as possible. In other words, we approximate the leximax optimum. In this paper, we present and evaluate SAT-based algorithms and heuristics for ap proximating the leximax-optimum of Multi-Objective Boolean Satisfiability problems. The evaluation is performed in the context of the package upgradeability problem, on the set of benchmarks from the Mancoosi International Solver Competition, with combinations of up to five different objective functions.
Název v anglickém jazyce
How to Approximate Leximax-optimal Solutions
Popis výsledku anglicky
Many real-world problems can be modelled as Multi-Objective Combinatorial Opti misation (MOCO) problems. In the multi-objective case, there is not a single optimum value but a set of optima known as Pareto-optima. However, the number of Pareto-optima can be too large to enumerate. Instead, one can compute a minimum Pareto-optimum according to an order. The leximax order selects a Pareto-optimum such that the objec tive functions with the worst values are penalised the least. Unlike other orders, such as the lexicographic order or the weighted sum order, the leximax order does not favour any objective function at the expense of others. Also, the leximax-optimum has a guaranteed small trade-off between the objective functions. In some real-world MOCO problems, the time to find a solution may be limited and computing a leximax-optimal solution may take too long. In such problems, we search for solutions that can be computed in the given admissible amount of time and that are as close to the leximax-optimum as possible. In other words, we approximate the leximax optimum. In this paper, we present and evaluate SAT-based algorithms and heuristics for ap proximating the leximax-optimum of Multi-Objective Boolean Satisfiability problems. The evaluation is performed in the context of the package upgradeability problem, on the set of benchmarks from the Mancoosi International Solver Competition, with combinations of up to five different objective functions.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LL1902" target="_blank" >LL1902: Obohacování SMT řešičů pomocí strojového učení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Pragmatics of SAT a workshop of the 24nd International Conference on Theory and Applications of Satisfiability Testing
ISBN
—
ISSN
1574-0617
e-ISSN
1574-0617
Počet stran výsledku
16
Strana od-do
—
Název nakladatele
IOS Press
Místo vydání
Amsterdam
Místo konání akce
Barcelona
Datum konání akce
5. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—