SAT-based Leximax Optimisation Algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F22%3A00364161" target="_blank" >RIV/68407700:21730/22:00364161 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.SAT.2022.29" target="_blank" >https://doi.org/10.4230/LIPIcs.SAT.2022.29</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.SAT.2022.29" target="_blank" >10.4230/LIPIcs.SAT.2022.29</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SAT-based Leximax Optimisation Algorithms
Popis výsledku v původním jazyce
In several real-world problems, it is often the case that the goal is to optimise several objective functions. However, usually there is not a single optimal objective vector. Instead, there are many optimal objective vectors known as Pareto-optima. Finding all Pareto-optima is computationally expensive and the number of Pareto-optima can be too large for a user to analyse. A compromise can be made by defining an optimisation criterion that integrates all objective functions. In this paper we propose several SAT-based algorithms to solve multi-objective optimisation problems using the leximax criterion. The leximax criterion is used to obtain a Pareto-optimal solution with a small trade-off between the objective functions, which is suitable in problems where there is an absence of priorities between the objective functions. Experimental results on the Multi-Objective Package Upgradeability Optimisation problem show that the SAT-based algorithms are able to outperform the Integer Linear Programming (ILP) approach when using non-commercial ILP solvers. Additionally, experimental results on selected instances from the MaxSAT evaluation adapted to the multi-objective domain show that our approach outperforms the ILP approach using commercial solvers.
Název v anglickém jazyce
SAT-based Leximax Optimisation Algorithms
Popis výsledku anglicky
In several real-world problems, it is often the case that the goal is to optimise several objective functions. However, usually there is not a single optimal objective vector. Instead, there are many optimal objective vectors known as Pareto-optima. Finding all Pareto-optima is computationally expensive and the number of Pareto-optima can be too large for a user to analyse. A compromise can be made by defining an optimisation criterion that integrates all objective functions. In this paper we propose several SAT-based algorithms to solve multi-objective optimisation problems using the leximax criterion. The leximax criterion is used to obtain a Pareto-optimal solution with a small trade-off between the objective functions, which is suitable in problems where there is an absence of priorities between the objective functions. Experimental results on the Multi-Objective Package Upgradeability Optimisation problem show that the SAT-based algorithms are able to outperform the Integer Linear Programming (ILP) approach when using non-commercial ILP solvers. Additionally, experimental results on selected instances from the MaxSAT evaluation adapted to the multi-objective domain show that our approach outperforms the ILP approach using commercial solvers.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LL1902" target="_blank" >LL1902: Obohacování SMT řešičů pomocí strojového učení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)
ISBN
978-3-95977-242-6
ISSN
—
e-ISSN
1868-8969
Počet stran výsledku
29
Strana od-do
—
Název nakladatele
Dagstuhl Publishing,
Místo vydání
Saarbrücken
Místo konání akce
Haifa
Datum konání akce
2. 8. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—