Industry 4.0 Asset-based Risk Mitigation for Production Operation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00354552" target="_blank" >RIV/68407700:21730/21:00354552 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/CASE49439.2021.9551419" target="_blank" >https://doi.org/10.1109/CASE49439.2021.9551419</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CASE49439.2021.9551419" target="_blank" >10.1109/CASE49439.2021.9551419</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Industry 4.0 Asset-based Risk Mitigation for Production Operation
Popis výsledku v původním jazyce
During engineering and operation of flexible robot-based production systems meeting the Industry 4.0 (I40) paradigm, engineers require guidance to analyze and resolve issues that may disturb the production process. Challenging issues stem from causes in several heterogeneous engineering disciplines. Unfortunately, current risk mitigation guidelines frequently focus on isolated components and not on risks of the entire system. This fragmented guidance is hard to apply for engineers who are not aware of existing dependencies between components of different types. Therefore, risks in the engineering and operation of I40 components are hard to identify and mitigate. In this paper, we propose the Industry 4.0 Asset-based Risk Mitigation (I4ARM) approach, providing knowledge for efficient root cause analysis to non-experts based on (a) a minimal model for knowledge representation as an I40 asset network with cause-effect annotations and (b) the I4ARM method for model building and risk mitigation with structured guidance. We build on the I40 asset network concept, cause-effect analysis, and decision trees to enable efficient and effective risk mitigation with structured guidance. I4ARM facilitates for engineers (a) defining an Industry 4.0 asset network and relationships, (b) identifying risks, and (c) supporting risk mitigation. We conceptually evaluate I4ARM for a real-world I40 use case. The results showed that the I40 Asset Network with cause-effect relationships and decision trees is usable and useful both for experienced and novice engineers to efficiently and systematically mitigate risks in I40 environments.
Název v anglickém jazyce
Industry 4.0 Asset-based Risk Mitigation for Production Operation
Popis výsledku anglicky
During engineering and operation of flexible robot-based production systems meeting the Industry 4.0 (I40) paradigm, engineers require guidance to analyze and resolve issues that may disturb the production process. Challenging issues stem from causes in several heterogeneous engineering disciplines. Unfortunately, current risk mitigation guidelines frequently focus on isolated components and not on risks of the entire system. This fragmented guidance is hard to apply for engineers who are not aware of existing dependencies between components of different types. Therefore, risks in the engineering and operation of I40 components are hard to identify and mitigate. In this paper, we propose the Industry 4.0 Asset-based Risk Mitigation (I4ARM) approach, providing knowledge for efficient root cause analysis to non-experts based on (a) a minimal model for knowledge representation as an I40 asset network with cause-effect annotations and (b) the I4ARM method for model building and risk mitigation with structured guidance. We build on the I40 asset network concept, cause-effect analysis, and decision trees to enable efficient and effective risk mitigation with structured guidance. I4ARM facilitates for engineers (a) defining an Industry 4.0 asset network and relationships, (b) identifying risks, and (c) supporting risk mitigation. We conceptually evaluate I4ARM for a real-world I40 use case. The results showed that the I40 Asset Network with cause-effect relationships and decision trees is usable and useful both for experienced and novice engineers to efficiently and systematically mitigate risks in I40 environments.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_026%2F0008432" target="_blank" >EF16_026/0008432: Klastr 4.0 - Metodologie systémové integrace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)
ISBN
978-1-6654-1873-7
ISSN
2161-8070
e-ISSN
2161-8089
Počet stran výsledku
8
Strana od-do
278-285
Název nakladatele
IEEE Industrial Electronic Society
Místo vydání
Vienna
Místo konání akce
Lyon
Datum konání akce
23. 8. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000878693200036