Semi-supervised Learning in Camera Surveillance Image Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00356755" target="_blank" >RIV/68407700:21730/21:00356755 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICCP53602.2021.9733483" target="_blank" >https://doi.org/10.1109/ICCP53602.2021.9733483</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCP53602.2021.9733483" target="_blank" >10.1109/ICCP53602.2021.9733483</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semi-supervised Learning in Camera Surveillance Image Classification
Popis výsledku v původním jazyce
Recognizing pedestrian attributes in camera surveillance images is a very hard problem, due to the lack of high-quality labeled data. In the field of deep learning the semi-supervised learning paradigm provides a possible answer to this problem. We propose a novel semi-supervised model that we call Binary Mean Teacher, tailored for binary classification task of detecting the presence of wearable objects. We train our model in a traditional scenario with a randomly initialized model, but we also explore fine-tuning a model pretrained on a large-scale image dataset. The performance of our model is compared to strong supervised baselines trained or fine-tuned using our dataset and the same augmentation strategy as in our model. We evaluate the impact of various augmentation strategies commonly used in deep learning on the performance of models in our binary classification task. Using only 1000 labeled training images, randomly initialized Binary Mean Teacher model achieves roughly 90% classification accuracy compared to 75% accuracy of randomly initialized supervised model that does not use any augmentations. When both Binary Mean Teacher and the supervised model are pretrained using the ImageNet dataset, and augmentations are used for both models, the Binary Mean Teacher achieves 92% accuracy compared to 90% accuracy of the supervised model.
Název v anglickém jazyce
Semi-supervised Learning in Camera Surveillance Image Classification
Popis výsledku anglicky
Recognizing pedestrian attributes in camera surveillance images is a very hard problem, due to the lack of high-quality labeled data. In the field of deep learning the semi-supervised learning paradigm provides a possible answer to this problem. We propose a novel semi-supervised model that we call Binary Mean Teacher, tailored for binary classification task of detecting the presence of wearable objects. We train our model in a traditional scenario with a randomly initialized model, but we also explore fine-tuning a model pretrained on a large-scale image dataset. The performance of our model is compared to strong supervised baselines trained or fine-tuned using our dataset and the same augmentation strategy as in our model. We evaluate the impact of various augmentation strategies commonly used in deep learning on the performance of models in our binary classification task. Using only 1000 labeled training images, randomly initialized Binary Mean Teacher model achieves roughly 90% classification accuracy compared to 75% accuracy of randomly initialized supervised model that does not use any augmentations. When both Binary Mean Teacher and the supervised model are pretrained using the ImageNet dataset, and augmentations are used for both models, the Binary Mean Teacher achieves 92% accuracy compared to 90% accuracy of the supervised model.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 IEEE 17th International Conference on Intelligent Computer Communication and Processing (ICCP)
ISBN
978-1-6654-0976-6
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
155-162
Název nakladatele
IEEE Industrial Electronic Society
Místo vydání
Vienna
Místo konání akce
Cluj-Napoca
Datum konání akce
28. 10. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—