Assignment of infinite zero orders in linear systems using state feedback
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F22%3A00353763" target="_blank" >RIV/68407700:21730/22:00353763 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.automatica.2021.109954" target="_blank" >https://doi.org/10.1016/j.automatica.2021.109954</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.automatica.2021.109954" target="_blank" >10.1016/j.automatica.2021.109954</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Assignment of infinite zero orders in linear systems using state feedback
Popis výsledku v původním jazyce
The problem of modifying the infinite zero orders in linear multivariable systems by nonregular state feedback is revisited. An entirely different algebraic approach is presented that offers new, inspiring insights into the problem. The approach is based on the properties of the invariant factors of a product of two proper rational matrices. A complete and explicit solution to the problem is established for linear multivariable systems described by quadruples (A, B, C, D). The system is first brought to Morse normal form so that one can identify the structural invariants and construct a state-feedback realizable compensator that assigns the prespecified infinite zero orders, then one returns to the original coordinates. The solvability condition, necessary and sufficient, is stated by using the system’s structural invariants; the use of conjugate lists of invariants is avoided. In addition to determining all infinite zero orders that can be assigned, the most important result of the new approach is a characterization of the structural properties of all compensators achieving every single assignable list of infinite zero orders. It turns out that this is a combinatorial problem. The solution set has the structure of a lattice of lists of nonnegative integers with a given sum, partially ordered by majorization.
Název v anglickém jazyce
Assignment of infinite zero orders in linear systems using state feedback
Popis výsledku anglicky
The problem of modifying the infinite zero orders in linear multivariable systems by nonregular state feedback is revisited. An entirely different algebraic approach is presented that offers new, inspiring insights into the problem. The approach is based on the properties of the invariant factors of a product of two proper rational matrices. A complete and explicit solution to the problem is established for linear multivariable systems described by quadruples (A, B, C, D). The system is first brought to Morse normal form so that one can identify the structural invariants and construct a state-feedback realizable compensator that assigns the prespecified infinite zero orders, then one returns to the original coordinates. The solvability condition, necessary and sufficient, is stated by using the system’s structural invariants; the use of conjugate lists of invariants is avoided. In addition to determining all infinite zero orders that can be assigned, the most important result of the new approach is a characterization of the structural properties of all compensators achieving every single assignable list of infinite zero orders. It turns out that this is a combinatorial problem. The solution set has the structure of a lattice of lists of nonnegative integers with a given sum, partially ordered by majorization.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Umělá inteligence a uvažování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Automatica
ISSN
0005-1098
e-ISSN
1873-2836
Svazek periodika
135
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
000716813000022
EID výsledku v databázi Scopus
2-s2.0-85117567254