Support Vector Machines for Control of Multimodal Processes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F22%3A00354007" target="_blank" >RIV/68407700:21730/22:00354007 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-96302-6_35" target="_blank" >http://dx.doi.org/10.1007/978-3-030-96302-6_35</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-96302-6_35" target="_blank" >10.1007/978-3-030-96302-6_35</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Support Vector Machines for Control of Multimodal Processes
Popis výsledku v původním jazyce
In recent manufacturing processes, the number of common causes of variation increases with the complexity of processes, leading to different shifts of the in-control process between multiple modes. Such a multimodal process violates the normality assumption, which decreases the efficiency of the commonly used methods and often disables the usage of SPC. This paper investigates the performance of one-class support vector machine (OSVM) in a multimodal setting. We have generated 5-modal synthetic data set with two correlated variables that violate the normality assumption. These methods were compared on the horizontally, vertically, and diagonally shifted out-of-control data. We have found that OSVM outperforms the other two commonly used SPC methods, which demonstrates that its more flexible decision boundary can naturally wrap the data from multimodal processes and can bring benefits to the control of modern complex processes.
Název v anglickém jazyce
Support Vector Machines for Control of Multimodal Processes
Popis výsledku anglicky
In recent manufacturing processes, the number of common causes of variation increases with the complexity of processes, leading to different shifts of the in-control process between multiple modes. Such a multimodal process violates the normality assumption, which decreases the efficiency of the commonly used methods and often disables the usage of SPC. This paper investigates the performance of one-class support vector machine (OSVM) in a multimodal setting. We have generated 5-modal synthetic data set with two correlated variables that violate the normality assumption. These methods were compared on the horizontally, vertically, and diagonally shifted out-of-control data. We have found that OSVM outperforms the other two commonly used SPC methods, which demonstrates that its more flexible decision boundary can naturally wrap the data from multimodal processes and can bring benefits to the control of modern complex processes.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 13th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2021)
ISBN
978-3-030-96302-6
ISSN
2367-3370
e-ISSN
2367-3389
Počet stran výsledku
10
Strana od-do
384-393
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
online
Datum konání akce
15. 12. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000774224200035