3D Shapes Classification Using Intermediate Parts Representation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F22%3A00364177" target="_blank" >RIV/68407700:21730/22:00364177 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-08974-9_34" target="_blank" >https://doi.org/10.1007/978-3-031-08974-9_34</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-08974-9_34" target="_blank" >10.1007/978-3-031-08974-9_34</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
3D Shapes Classification Using Intermediate Parts Representation
Popis výsledku v původním jazyce
We describe a novel approach for 3D shape classification which classifies the shape based on a graph of its parts. To segment out the parts of a given object, we train a shape segmentation network to mimic the segments obtained from an offline co-segmentation method. Using the predicted segments, our approach constructs a spatial graph of the parts which reflects the spatial relations between them. The graph of parts is finally classified by a Tensor Field Network - a type of a graph neural network which is designed to be equivariant to rotations and translations. Therefore, the classification of the spatial graph of parts is not influenced by the choice of the coordinate frame. We also introduce a data augmentation method which is particularly suitable to our setting. A preliminary experimental results show that our method is competitive with the standard approach which does not detect parts as an intermediate step. The intermediate representation of parts makes the whole model more interpretable.
Název v anglickém jazyce
3D Shapes Classification Using Intermediate Parts Representation
Popis výsledku anglicky
We describe a novel approach for 3D shape classification which classifies the shape based on a graph of its parts. To segment out the parts of a given object, we train a shape segmentation network to mimic the segments obtained from an offline co-segmentation method. Using the predicted segments, our approach constructs a spatial graph of the parts which reflects the spatial relations between them. The graph of parts is finally classified by a Tensor Field Network - a type of a graph neural network which is designed to be equivariant to rotations and translations. Therefore, the classification of the spatial graph of parts is not influenced by the choice of the coordinate frame. We also introduce a data augmentation method which is particularly suitable to our setting. A preliminary experimental results show that our method is competitive with the standard approach which does not detect parts as an intermediate step. The intermediate representation of parts makes the whole model more interpretable.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LL1902" target="_blank" >LL1902: Obohacování SMT řešičů pomocí strojového učení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Information Processing and Management of Uncertainty in Knowledge-Based Systems
ISBN
978-3-031-08973-2
ISSN
1865-0929
e-ISSN
1865-0929
Počet stran výsledku
12
Strana od-do
431-442
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Miláno
Datum konání akce
11. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—