Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Integrated lot-sizing and scheduling: Mitigation of uncertainty in demand and processing time by machine learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F23%3A00361517" target="_blank" >RIV/68407700:21730/23:00361517 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.engappai.2022.105676" target="_blank" >https://doi.org/10.1016/j.engappai.2022.105676</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.engappai.2022.105676" target="_blank" >10.1016/j.engappai.2022.105676</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Integrated lot-sizing and scheduling: Mitigation of uncertainty in demand and processing time by machine learning

  • Popis výsledku v původním jazyce

    Production rescheduling is one of the most challenging problems in production management, in which some parameters, such as customer demand and job processing time, are subject to uncertainty during the planning horizon. This paper develops a scheduling and rescheduling method for the simultaneous lot-sizing and job shop scheduling problem, considering sequence-dependent setup times and capacity constraints. The objective is to find a trade-off between safety levels and production costs focusing on schedulability and optimality as the two most important performance indicators in the face of uncertainty. Therefore, a new adjustable formulation based on satisfiability modulo theories has been developed to tackle the demand and processing time uncertainty. Then, a combination of neural networks and a K-means based heuristic was applied to calibrate the model by determining the profitable value of the safety levels as a strategy to increase the robustness of the schedule. We also developed a Monte Carlo simulation to assess the performance of the proposed algorithm and compare it with other approaches addressed in the literature. The computational results show that the proposed algorithm is efficient and promising in protecting the schedulability of the model, taking the optimality criterion into account.

  • Název v anglickém jazyce

    Integrated lot-sizing and scheduling: Mitigation of uncertainty in demand and processing time by machine learning

  • Popis výsledku anglicky

    Production rescheduling is one of the most challenging problems in production management, in which some parameters, such as customer demand and job processing time, are subject to uncertainty during the planning horizon. This paper develops a scheduling and rescheduling method for the simultaneous lot-sizing and job shop scheduling problem, considering sequence-dependent setup times and capacity constraints. The objective is to find a trade-off between safety levels and production costs focusing on schedulability and optimality as the two most important performance indicators in the face of uncertainty. Therefore, a new adjustable formulation based on satisfiability modulo theories has been developed to tackle the demand and processing time uncertainty. Then, a combination of neural networks and a K-means based heuristic was applied to calibrate the model by determining the profitable value of the safety levels as a strategy to increase the robustness of the schedule. We also developed a Monte Carlo simulation to assess the performance of the proposed algorithm and compare it with other approaches addressed in the literature. The computational results show that the proposed algorithm is efficient and promising in protecting the schedulability of the model, taking the optimality criterion into account.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LL1902" target="_blank" >LL1902: Obohacování SMT řešičů pomocí strojového učení</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Engineering Applications of Artificial Intelligence

  • ISSN

    0952-1976

  • e-ISSN

    1873-6769

  • Svazek periodika

    2023

  • Číslo periodika v rámci svazku

    105676

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    18

  • Strana od-do

    105676-105693

  • Kód UT WoS článku

    000894966600011

  • EID výsledku v databázi Scopus

    2-s2.0-85143908425