Integrated lot-sizing and scheduling: Mitigation of uncertainty in demand and processing time by machine learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F23%3A00361517" target="_blank" >RIV/68407700:21730/23:00361517 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.engappai.2022.105676" target="_blank" >https://doi.org/10.1016/j.engappai.2022.105676</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.engappai.2022.105676" target="_blank" >10.1016/j.engappai.2022.105676</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Integrated lot-sizing and scheduling: Mitigation of uncertainty in demand and processing time by machine learning
Popis výsledku v původním jazyce
Production rescheduling is one of the most challenging problems in production management, in which some parameters, such as customer demand and job processing time, are subject to uncertainty during the planning horizon. This paper develops a scheduling and rescheduling method for the simultaneous lot-sizing and job shop scheduling problem, considering sequence-dependent setup times and capacity constraints. The objective is to find a trade-off between safety levels and production costs focusing on schedulability and optimality as the two most important performance indicators in the face of uncertainty. Therefore, a new adjustable formulation based on satisfiability modulo theories has been developed to tackle the demand and processing time uncertainty. Then, a combination of neural networks and a K-means based heuristic was applied to calibrate the model by determining the profitable value of the safety levels as a strategy to increase the robustness of the schedule. We also developed a Monte Carlo simulation to assess the performance of the proposed algorithm and compare it with other approaches addressed in the literature. The computational results show that the proposed algorithm is efficient and promising in protecting the schedulability of the model, taking the optimality criterion into account.
Název v anglickém jazyce
Integrated lot-sizing and scheduling: Mitigation of uncertainty in demand and processing time by machine learning
Popis výsledku anglicky
Production rescheduling is one of the most challenging problems in production management, in which some parameters, such as customer demand and job processing time, are subject to uncertainty during the planning horizon. This paper develops a scheduling and rescheduling method for the simultaneous lot-sizing and job shop scheduling problem, considering sequence-dependent setup times and capacity constraints. The objective is to find a trade-off between safety levels and production costs focusing on schedulability and optimality as the two most important performance indicators in the face of uncertainty. Therefore, a new adjustable formulation based on satisfiability modulo theories has been developed to tackle the demand and processing time uncertainty. Then, a combination of neural networks and a K-means based heuristic was applied to calibrate the model by determining the profitable value of the safety levels as a strategy to increase the robustness of the schedule. We also developed a Monte Carlo simulation to assess the performance of the proposed algorithm and compare it with other approaches addressed in the literature. The computational results show that the proposed algorithm is efficient and promising in protecting the schedulability of the model, taking the optimality criterion into account.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LL1902" target="_blank" >LL1902: Obohacování SMT řešičů pomocí strojového učení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Engineering Applications of Artificial Intelligence
ISSN
0952-1976
e-ISSN
1873-6769
Svazek periodika
2023
Číslo periodika v rámci svazku
105676
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
105676-105693
Kód UT WoS článku
000894966600011
EID výsledku v databázi Scopus
2-s2.0-85143908425