Reducing Peak Temperature by Redistributing Idle-Time in Modern MPSoCs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F23%3A00367843" target="_blank" >RIV/68407700:21730/23:00367843 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ISORC58943.2023.00020" target="_blank" >https://doi.org/10.1109/ISORC58943.2023.00020</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ISORC58943.2023.00020" target="_blank" >10.1109/ISORC58943.2023.00020</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reducing Peak Temperature by Redistributing Idle-Time in Modern MPSoCs
Popis výsledku v původním jazyce
Reducing heat dissipation is critical for modern multi-core systems to meet increasing computational performance requirements. In this paper, we investigate the impact of idle-time distribution on the peak temperature of Multi-processor System-on-Chip (MPSoCs) for the constrained-deadline non-preemptive task scheduling problem that is common in safety-critical systems. It is assumed that the transient thermal behavior of the platform cannot be neglected and must be modeled and accounted for by the optimization algorithms. In this context, we derive a dual-node thermal model that can be well applied to a dual-cluster i.MX8 QuadMax from NXP. Based on this model, we implement two offline optimization-based strategies, including an iterative per-core approach based on the principles presented in the related literature and a novel holistic approach. The results show that the per-core approach and the holistic approach reduce the peak temperature by 7.1% and 14% on average compared to the traditional non-thermal approach. We perform the experiments on the i.MX8 QuadMax platform to validate the applicability of the results and observe a good match between the model-based simulations and the actual physical platform measurements.
Název v anglickém jazyce
Reducing Peak Temperature by Redistributing Idle-Time in Modern MPSoCs
Popis výsledku anglicky
Reducing heat dissipation is critical for modern multi-core systems to meet increasing computational performance requirements. In this paper, we investigate the impact of idle-time distribution on the peak temperature of Multi-processor System-on-Chip (MPSoCs) for the constrained-deadline non-preemptive task scheduling problem that is common in safety-critical systems. It is assumed that the transient thermal behavior of the platform cannot be neglected and must be modeled and accounted for by the optimization algorithms. In this context, we derive a dual-node thermal model that can be well applied to a dual-cluster i.MX8 QuadMax from NXP. Based on this model, we implement two offline optimization-based strategies, including an iterative per-core approach based on the principles presented in the related literature and a novel holistic approach. The results show that the per-core approach and the holistic approach reduce the peak temperature by 7.1% and 14% on average compared to the traditional non-thermal approach. We perform the experiments on the i.MX8 QuadMax platform to validate the applicability of the results and observe a good match between the model-based simulations and the actual physical platform measurements.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/CK03000033" target="_blank" >CK03000033: Platforma pro certifikaci automobilů s pokročilou automatizací řízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 IEEE 26th International Symposium on Real-Time Distributed Computing (ISORC)
ISBN
979-8-3503-3903-1
ISSN
2770-1611
e-ISSN
2770-162X
Počet stran výsledku
10
Strana od-do
76-85
Název nakladatele
IEEE Xplore
Místo vydání
—
Místo konání akce
Nashville, Tennessee
Datum konání akce
23. 5. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001044268900008