SAT-Based Techniques for Lexicographically Smallest Finite Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F24%3A00375284" target="_blank" >RIV/68407700:21730/24:00375284 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1609/aaai.v38i8.28643" target="_blank" >https://doi.org/10.1609/aaai.v38i8.28643</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1609/aaai.v38i8.28643" target="_blank" >10.1609/aaai.v38i8.28643</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SAT-Based Techniques for Lexicographically Smallest Finite Models
Popis výsledku v původním jazyce
This paper proposes SAT-based techniques to calculate a specific normal form of a given finite mathematical structure (model). The normal form is obtained by permuting the domain elements so that the representation of the structure is lexicographically smallest possible. Such a normal form is of interest to mathematicians as it enables easy cataloging of algebraic structures. In particular, two structures are isomorphic precisely when their normal forms are the same. This form is also natural to inspect as mathematicians have been using it routinely for many decades. We develop a novel approach where a SAT solver is used in a black-box fashion to compute the smallest representative. The approach constructs the representative gradually and searches the space of possible isomorphisms, requiring a small number of variables. However, the approach may lead to a large number of SAT calls and therefore we devise propagation techniques to reduce this number. The paper focuses on finite structures with a single binary operation (encompassing groups, semigroups, etc.). However, the approach is generalizable to arbitrary finite structures. We provide an implementation of the proposed algorithm and evaluate it on a variety of algebraic structures.
Název v anglickém jazyce
SAT-Based Techniques for Lexicographically Smallest Finite Models
Popis výsledku anglicky
This paper proposes SAT-based techniques to calculate a specific normal form of a given finite mathematical structure (model). The normal form is obtained by permuting the domain elements so that the representation of the structure is lexicographically smallest possible. Such a normal form is of interest to mathematicians as it enables easy cataloging of algebraic structures. In particular, two structures are isomorphic precisely when their normal forms are the same. This form is also natural to inspect as mathematicians have been using it routinely for many decades. We develop a novel approach where a SAT solver is used in a black-box fashion to compute the smallest representative. The approach constructs the representative gradually and searches the space of possible isomorphisms, requiring a small number of variables. However, the approach may lead to a large number of SAT calls and therefore we devise propagation techniques to reduce this number. The paper focuses on finite structures with a single binary operation (encompassing groups, semigroups, etc.). However, the approach is generalizable to arbitrary finite structures. We provide an implementation of the proposed algorithm and evaluate it on a variety of algebraic structures.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 38th AAAI Conference on Artificial Intelligence
ISBN
—
ISSN
2159-5399
e-ISSN
2374-3468
Počet stran výsledku
9
Strana od-do
8048-8056
Název nakladatele
AAAI Press
Místo vydání
Menlo Park
Místo konání akce
Vancouver
Datum konání akce
20. 2. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001239938200016