A Security Risk Taxonomy for Prompt-Based Interaction with Large Language Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F24%3A00376300" target="_blank" >RIV/68407700:21730/24:00376300 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ACCESS.2024.3450388" target="_blank" >https://doi.org/10.1109/ACCESS.2024.3450388</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2024.3450388" target="_blank" >10.1109/ACCESS.2024.3450388</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Security Risk Taxonomy for Prompt-Based Interaction with Large Language Models
Popis výsledku v původním jazyce
As large language models (LLMs) permeate more and more applications, an assessment of their associated security risks becomes increasingly necessary. The potential for exploitation by malicious actors, ranging from disinformation to data breaches and reputation damage, is substantial. This paper addresses a gap in current research by specifically focusing on security risks posed by LLMs within the prompt-based interaction scheme, which extends beyond the widely covered ethical and societal implications. Our work proposes a taxonomy of security risks along the user-model communication pipeline and categorizes the attacks by target and attack type alongside the commonly used confidentiality, integrity, and availability (CIA) triad. The taxonomy is reinforced with specific attack examples to showcase the real-world impact of these risks. Through this taxonomy, we aim to inform the development of robust and secure LLM applications, enhancing their safety and trustworthiness.
Název v anglickém jazyce
A Security Risk Taxonomy for Prompt-Based Interaction with Large Language Models
Popis výsledku anglicky
As large language models (LLMs) permeate more and more applications, an assessment of their associated security risks becomes increasingly necessary. The potential for exploitation by malicious actors, ranging from disinformation to data breaches and reputation damage, is substantial. This paper addresses a gap in current research by specifically focusing on security risks posed by LLMs within the prompt-based interaction scheme, which extends beyond the widely covered ethical and societal implications. Our work proposes a taxonomy of security risks along the user-model communication pipeline and categorizes the attacks by target and attack type alongside the commonly used confidentiality, integrity, and availability (CIA) triad. The taxonomy is reinforced with specific attack examples to showcase the real-world impact of these risks. Through this taxonomy, we aim to inform the development of robust and secure LLM applications, enhancing their safety and trustworthiness.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotika a pokročilá průmyslová výroba</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
12
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
126176-126187
Kód UT WoS článku
001316171900001
EID výsledku v databázi Scopus
2-s2.0-85202710051