Out of the Cage: How Stochastic Parrots Win in Cyber Security Environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00372898" target="_blank" >RIV/68407700:21230/24:00372898 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.5220/0012391800003636" target="_blank" >https://doi.org/10.5220/0012391800003636</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0012391800003636" target="_blank" >10.5220/0012391800003636</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Out of the Cage: How Stochastic Parrots Win in Cyber Security Environments
Popis výsledku v původním jazyce
Large Language Models (LLMs) have gained widespread popularity across diverse domains involving text generation, summarization, and various natural language processing tasks. Despite their inherent limitations, LLM-based designs have shown promising capabilities in planning and navigating open-world scenarios. This paper introduces a novel application of pre-trained LLMs as agents within cybersecurity network environments, focusing on their utility for sequential decision-making processes. We present an approach wherein pre-trained LLMs are leveraged as attacking agents in two reinforcement learning environments. Our proposed agents demonstrate similar or better performance against state-of-the-art agents trained for thousands of episodes in most scenarios and configurations. In addition, the best LLM agents perform similarly to human testers of the environment without any additional training process. This design highlights the potential of LLMs to address complex decision-making tasks within cybersecurity efficiently. Furthermore, we introduce a new network security environment named NetSecGame. The environment is designed to support complex multi-agent scenarios within the network security domain eventually. The proposed environment mimics real network attacks and is designed to be highly modular and adaptable for various scenarios.
Název v anglickém jazyce
Out of the Cage: How Stochastic Parrots Win in Cyber Security Environments
Popis výsledku anglicky
Large Language Models (LLMs) have gained widespread popularity across diverse domains involving text generation, summarization, and various natural language processing tasks. Despite their inherent limitations, LLM-based designs have shown promising capabilities in planning and navigating open-world scenarios. This paper introduces a novel application of pre-trained LLMs as agents within cybersecurity network environments, focusing on their utility for sequential decision-making processes. We present an approach wherein pre-trained LLMs are leveraged as attacking agents in two reinforcement learning environments. Our proposed agents demonstrate similar or better performance against state-of-the-art agents trained for thousands of episodes in most scenarios and configurations. In addition, the best LLM agents perform similarly to human testers of the environment without any additional training process. This design highlights the potential of LLMs to address complex decision-making tasks within cybersecurity efficiently. Furthermore, we introduce a new network security environment named NetSecGame. The environment is designed to support complex multi-agent scenarios within the network security domain eventually. The proposed environment mimics real network attacks and is designed to be highly modular and adaptable for various scenarios.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/VJ02010020" target="_blank" >VJ02010020: AI-Dojo: Multiagentní testbed pro výzkum a testování umělé inteligence v kyberbezpečnosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 16th International Conference on Agents and Artificial Intelligence (Volume 3)
ISBN
978-989-758-680-4
ISSN
2184-3589
e-ISSN
2184-433X
Počet stran výsledku
8
Strana od-do
774-781
Název nakladatele
Science and Technology Publications, Lda
Místo vydání
Setúbal
Místo konání akce
Rome
Datum konání akce
24. 2. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—