Bridging Language, Vision and Action: Multimodal VAEs in Robotic Manipulation Tasks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F24%3A00376304" target="_blank" >RIV/68407700:21730/24:00376304 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/IROS58592.2024.10802160" target="_blank" >https://doi.org/10.1109/IROS58592.2024.10802160</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IROS58592.2024.10802160" target="_blank" >10.1109/IROS58592.2024.10802160</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bridging Language, Vision and Action: Multimodal VAEs in Robotic Manipulation Tasks
Popis výsledku v původním jazyce
In this work, we focus on unsupervised vision language-action mapping in the area of robotic manipulation. Recently, multiple approaches employing pre-trained large language and vision models have been proposed for this task. However, they are computationally demanding and require careful fine-tuning of the produced outputs. A more lightweight alternative would be the implementation of multimodal Vari ational Autoencoders (VAEs) which can extract the latent features of the data and integrate them into a joint repre sentation, as has been demonstrated mostly on image-image or image-text data for the state-of-the-art models. Here we explore whether and how can multimodal VAEs be employed in unsupervised robotic manipulation tasks in a simulated environment. Based on the obtained results, we propose a model-invariant training alternative that improves the models’ performance in a simulator by up to 55 %. Moreover, we systematically evaluate the challenges raised by the individual tasks such as object or robot position variability, number of distractors or the task length. Our work thus also sheds light on the potential benefits and limitations of using the current multimodal VAEs for unsupervised learning of robotic motion trajectories based on vision and language.
Název v anglickém jazyce
Bridging Language, Vision and Action: Multimodal VAEs in Robotic Manipulation Tasks
Popis výsledku anglicky
In this work, we focus on unsupervised vision language-action mapping in the area of robotic manipulation. Recently, multiple approaches employing pre-trained large language and vision models have been proposed for this task. However, they are computationally demanding and require careful fine-tuning of the produced outputs. A more lightweight alternative would be the implementation of multimodal Vari ational Autoencoders (VAEs) which can extract the latent features of the data and integrate them into a joint repre sentation, as has been demonstrated mostly on image-image or image-text data for the state-of-the-art models. Here we explore whether and how can multimodal VAEs be employed in unsupervised robotic manipulation tasks in a simulated environment. Based on the obtained results, we propose a model-invariant training alternative that improves the models’ performance in a simulator by up to 55 %. Moreover, we systematically evaluate the challenges raised by the individual tasks such as object or robot position variability, number of distractors or the task length. Our work thus also sheds light on the potential benefits and limitations of using the current multimodal VAEs for unsupervised learning of robotic motion trajectories based on vision and language.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)
ISBN
979-8-3503-7770-5
ISSN
2153-0858
e-ISSN
2153-0866
Počet stran výsledku
7
Strana od-do
12522-12528
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Abu Dhabi
Datum konání akce
14. 10. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001433985300649