Multi-Task Learning of Object States and State-Modifying Actions From Web Videos
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F24%3A00380611" target="_blank" >RIV/68407700:21730/24:00380611 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TPAMI.2024.3362288" target="_blank" >https://doi.org/10.1109/TPAMI.2024.3362288</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TPAMI.2024.3362288" target="_blank" >10.1109/TPAMI.2024.3362288</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-Task Learning of Object States and State-Modifying Actions From Web Videos
Popis výsledku v původním jazyce
We aim to learn to temporally localize object state changes and the corresponding state-modifying actions by observing people interacting with objects in long uncurated web videos. We introduce three principal contributions. First, we develop a self-supervised model for jointly learning state-modifying actions together with the corresponding object states from an uncurated set of videos from the Internet. The model is self-supervised by the causal ordering signal, i.e., initial object state -> manipulating action -> end state. Second, we explore alternative multi-task network architectures and identify a model that enables efficient joint learning of multiple object states and actions, such as pouring water and pouring coffee, together. Third, we collect a new dataset, named ChangeIt, with more than 2600 hours of video and 34 thousand changes of object states. We report results on an existing instructional video dataset COIN as well as our new large-scale ChangeIt dataset containing tens of thousands of long uncurated web videos depicting various interactions such as hole drilling, cream whisking, or paper plane folding. We show that our multi-task model achieves a relative improvement of 40% over the prior methods and significantly outperforms both image-based and video-based zero-shot models for this problem.
Název v anglickém jazyce
Multi-Task Learning of Object States and State-Modifying Actions From Web Videos
Popis výsledku anglicky
We aim to learn to temporally localize object state changes and the corresponding state-modifying actions by observing people interacting with objects in long uncurated web videos. We introduce three principal contributions. First, we develop a self-supervised model for jointly learning state-modifying actions together with the corresponding object states from an uncurated set of videos from the Internet. The model is self-supervised by the causal ordering signal, i.e., initial object state -> manipulating action -> end state. Second, we explore alternative multi-task network architectures and identify a model that enables efficient joint learning of multiple object states and actions, such as pouring water and pouring coffee, together. Third, we collect a new dataset, named ChangeIt, with more than 2600 hours of video and 34 thousand changes of object states. We report results on an existing instructional video dataset COIN as well as our new large-scale ChangeIt dataset containing tens of thousands of long uncurated web videos depicting various interactions such as hole drilling, cream whisking, or paper plane folding. We show that our multi-task model achieves a relative improvement of 40% over the prior methods and significantly outperforms both image-based and video-based zero-shot models for this problem.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN
0162-8828
e-ISSN
1939-3539
Svazek periodika
46
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
5114-5130
Kód UT WoS článku
001240147800027
EID výsledku v databázi Scopus
2-s2.0-85184804699