Precision measurement of Compton scattering in silicon with a skipper CCD for dark matter detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A90107%2F22%3A00363777" target="_blank" >RIV/68407700:90107/22:00363777 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevD.106.092001" target="_blank" >https://doi.org/10.1103/PhysRevD.106.092001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.106.092001" target="_blank" >10.1103/PhysRevD.106.092001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Precision measurement of Compton scattering in silicon with a skipper CCD for dark matter detection
Popis výsledku v původním jazyce
Experiments aiming to directly detect dark matter through particle recoils can achieve energy thresholds of Oo10 eV thorn . In this regime, ionization signals from small-angle Compton scatters of environmental gamma rays constitute a significant background. Monte Carlo simulations used to build background models have not been experimentally validated at these low energies. We report a precision measurement of Compton scattering on silicon atomic shell electrons down to 23 eV. A skipper charge-coupled device with single -electron resolution, developed for the DAMIC-M experiment, was exposed to a 241Am gamma-ray source over several months. Features associated with the silicon K-, L1-, and L2;3-shells are clearly identified, and scattering on valence electrons is detected for the first time below 100 eV. We find that the relativistic impulse approximation for Compton scattering, which is implemented in Monte Carlo simulations commonly used by direct detection experiments, does not reproduce the measured spectrum below 0.5 keV. The data are in better agreement with ab initio calculations originally developed for x-ray absorption spectroscopy.
Název v anglickém jazyce
Precision measurement of Compton scattering in silicon with a skipper CCD for dark matter detection
Popis výsledku anglicky
Experiments aiming to directly detect dark matter through particle recoils can achieve energy thresholds of Oo10 eV thorn . In this regime, ionization signals from small-angle Compton scatters of environmental gamma rays constitute a significant background. Monte Carlo simulations used to build background models have not been experimentally validated at these low energies. We report a precision measurement of Compton scattering on silicon atomic shell electrons down to 23 eV. A skipper charge-coupled device with single -electron resolution, developed for the DAMIC-M experiment, was exposed to a 241Am gamma-ray source over several months. Features associated with the silicon K-, L1-, and L2;3-shells are clearly identified, and scattering on valence electrons is detected for the first time below 100 eV. We find that the relativistic impulse approximation for Compton scattering, which is implemented in Monte Carlo simulations commonly used by direct detection experiments, does not reproduce the measured spectrum below 0.5 keV. The data are in better agreement with ab initio calculations originally developed for x-ray absorption spectroscopy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10304 - Nuclear physics
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Svazek periodika
106
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
"092001-1"-"092001-12"
Kód UT WoS článku
000886709000009
EID výsledku v databázi Scopus
—