Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Skipping to the Finish Line: Sub-Electron Resolution Measurements with DAMIC-M CCDs for Dark Matter Detection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A90263%2F24%3A00381561" target="_blank" >RIV/68407700:90263/24:00381561 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.6082/uchicago.13992" target="_blank" >https://doi.org/10.6082/uchicago.13992</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Skipping to the Finish Line: Sub-Electron Resolution Measurements with DAMIC-M CCDs for Dark Matter Detection

  • Popis výsledku v původním jazyce

    Dark matter constitutes ~ 27% of the matter-energy distribution in the Universe. Over the past several decades, low-background experiments have been built at underground facilities to search for direct interactions with the elusive particle(s). In order to detect rare signals from dark matter interactions, great efforts must be taken to reduce, characterize, or model the natural radiation backgrounds in the laboratory environment. Detectors that are sensitive to electron and neutron scatters are subject to interactions from gamma rays and neutrons that originate from radioactive decays in nearby materials. Interactions in the detector from these particles can mimic dark matter interactions, so their signal needs to be precisely characterized. In this thesis, I present my contributions towards the research and development efforts for the DAMIC-M experiment. Two dedicated measurements were conducted at the University of Chicago campus with silicon skipper CCDs; whose floating gate amplifier allows for multiple Non-Destructive Charge Measurements (NDCMs) to reduce a pixel’s readout noise to a sub-electron level. The first measurement exposed the detector to gamma rays from an Am-241 source. The resultant Compton spectrum demonstrated clear features of silicon’s atomic shells and measured for the first time a clear signature of the L1 - L2,3 atomic shells and scattering off of valence-shell electrons. This measurement successfully demonstrated the efficacy of skipper technology (in contrast to conventional CCDs) by pushing the measurement threshold to 23 eV with only 64 NDCMs. The second measurement exposed the detector to an antimony-beryllium photo-neutron source to measure the ionization efficiency of silicon from nuclear scatters. This measurement demonstrates the full power of skipper technology’s ability to resolve single electrons and measures the ionization yield down to an O(eV) of charge-ionization. These two measurements demonstrate the sensitivity of DAMIC-M detectors to dark matter interactions with silicon electrons or nuclei.

  • Název v anglickém jazyce

    Skipping to the Finish Line: Sub-Electron Resolution Measurements with DAMIC-M CCDs for Dark Matter Detection

  • Popis výsledku anglicky

    Dark matter constitutes ~ 27% of the matter-energy distribution in the Universe. Over the past several decades, low-background experiments have been built at underground facilities to search for direct interactions with the elusive particle(s). In order to detect rare signals from dark matter interactions, great efforts must be taken to reduce, characterize, or model the natural radiation backgrounds in the laboratory environment. Detectors that are sensitive to electron and neutron scatters are subject to interactions from gamma rays and neutrons that originate from radioactive decays in nearby materials. Interactions in the detector from these particles can mimic dark matter interactions, so their signal needs to be precisely characterized. In this thesis, I present my contributions towards the research and development efforts for the DAMIC-M experiment. Two dedicated measurements were conducted at the University of Chicago campus with silicon skipper CCDs; whose floating gate amplifier allows for multiple Non-Destructive Charge Measurements (NDCMs) to reduce a pixel’s readout noise to a sub-electron level. The first measurement exposed the detector to gamma rays from an Am-241 source. The resultant Compton spectrum demonstrated clear features of silicon’s atomic shells and measured for the first time a clear signature of the L1 - L2,3 atomic shells and scattering off of valence-shell electrons. This measurement successfully demonstrated the efficacy of skipper technology (in contrast to conventional CCDs) by pushing the measurement threshold to 23 eV with only 64 NDCMs. The second measurement exposed the detector to an antimony-beryllium photo-neutron source to measure the ionization efficiency of silicon from nuclear scatters. This measurement demonstrates the full power of skipper technology’s ability to resolve single electrons and measures the ionization yield down to an O(eV) of charge-ionization. These two measurements demonstrate the sensitivity of DAMIC-M detectors to dark matter interactions with silicon electrons or nuclei.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10304 - Nuclear physics

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů