Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Adaptivní řízení nelineárního realtime systému

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F06%3A63504512" target="_blank" >RIV/70883521:28110/06:63504512 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Adaptive Control of Nonlinear Realtime System

  • Popis výsledku v původním jazyce

    Model predictive control using artificial neural network is usually applied with unchanging off-line trained predictor. However, this technique has a drawback in static predictor and it is useless in case of t-invariant processes. This pitfall can be removed by adaptive predictor which is unfortunately, in case of artificial neural network, immoderately computationally demanding. Proposed method - ADALINE significantly reduces computational demands of model predictive control using adaptive predictor based on artificial neural network. Investigated method is tested in experiments and compared to another adaptive control method - self-tuning control.

  • Název v anglickém jazyce

    Adaptive Control of Nonlinear Realtime System

  • Popis výsledku anglicky

    Model predictive control using artificial neural network is usually applied with unchanging off-line trained predictor. However, this technique has a drawback in static predictor and it is useless in case of t-invariant processes. This pitfall can be removed by adaptive predictor which is unfortunately, in case of artificial neural network, immoderately computationally demanding. Proposed method - ADALINE significantly reduces computational demands of model predictive control using adaptive predictor based on artificial neural network. Investigated method is tested in experiments and compared to another adaptive control method - self-tuning control.

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

    BC - Teorie a systémy řízení

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2006

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    ADVANCED TECHNOLOGIES : Research-Development-Application

  • ISBN

    3-86611-197-5

  • Počet stran výsledku

    20

  • Strana od-do

    793-812

  • Počet stran knihy

  • Název nakladatele

    PLV Pro Literatur Verlag Robert Mayer-Scholz

  • Místo vydání

    Mammendorf, Germany

  • Kód UT WoS kapitoly