Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Size dependent heating efficiency of multicore iron oxide particles in low-power alternating magnetic fields

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F17%3A63516382" target="_blank" >RIV/70883521:28110/17:63516382 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/70883521:28610/17:63516382

  • Výsledek na webu

    <a href="http://dx.doi.org/10.12693/APhysPolA.131.663" target="_blank" >http://dx.doi.org/10.12693/APhysPolA.131.663</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.12693/APhysPolA.131.663" target="_blank" >10.12693/APhysPolA.131.663</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Size dependent heating efficiency of multicore iron oxide particles in low-power alternating magnetic fields

  • Popis výsledku v původním jazyce

    Aggregates of superparamagnetic nanoparticles, so called multicore particles get much attention due to collective magnetic behaviour. Despite the fact that saturation magnetization and coercivity of multicore particles are lower than for single particles of comparable size, they can generate large amount of heat in alternating magnetic field. This makes them promising for magnetic hyperthermia. However, correlation between internal magnetic structure of multicore particles and their heating ability in alternating magnetic fields are not clear yet. Detailed experimental investigations are required to determine the optimal sizes of multicore particles and the alternating magnetic field parameters to obtain maximal heat. In this study, we demonstrated how hydrodynamic size of multicore particles influences alternating magnetic field energy absorption. Dense aggregates composed of bare magnetic iron oxide nanoparticles of 13 nm were obtained by coprecipitation. Further peptization allowed to gain aqueous dispersions of multicore particles with various hydrodynamic size, varing from 85 to 170 nm, due to electrostatic stabilization. Multicore particles dispersions have saturation magnetization of 40 A m(2)/kg(Fe3O4) and coercivity of 79.6 A/m regardless of their size. Dispersion of 85 nm multicore particles is stable and provides specific loss power of 42 W/g(Fe). Further increase of hydrodynamic size leads to low stability and loss of the ability to generate heat in alternating magnetic field.

  • Název v anglickém jazyce

    Size dependent heating efficiency of multicore iron oxide particles in low-power alternating magnetic fields

  • Popis výsledku anglicky

    Aggregates of superparamagnetic nanoparticles, so called multicore particles get much attention due to collective magnetic behaviour. Despite the fact that saturation magnetization and coercivity of multicore particles are lower than for single particles of comparable size, they can generate large amount of heat in alternating magnetic field. This makes them promising for magnetic hyperthermia. However, correlation between internal magnetic structure of multicore particles and their heating ability in alternating magnetic fields are not clear yet. Detailed experimental investigations are required to determine the optimal sizes of multicore particles and the alternating magnetic field parameters to obtain maximal heat. In this study, we demonstrated how hydrodynamic size of multicore particles influences alternating magnetic field energy absorption. Dense aggregates composed of bare magnetic iron oxide nanoparticles of 13 nm were obtained by coprecipitation. Further peptization allowed to gain aqueous dispersions of multicore particles with various hydrodynamic size, varing from 85 to 170 nm, due to electrostatic stabilization. Multicore particles dispersions have saturation magnetization of 40 A m(2)/kg(Fe3O4) and coercivity of 79.6 A/m regardless of their size. Dispersion of 85 nm multicore particles is stable and provides specific loss power of 42 W/g(Fe). Further increase of hydrodynamic size leads to low stability and loss of the ability to generate heat in alternating magnetic field.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1504" target="_blank" >LO1504: Centrum polymerních systémů plus</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta Physica Polonica A

  • ISSN

    0587-4246

  • e-ISSN

  • Svazek periodika

    131

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    PL - Polská republika

  • Počet stran výsledku

    3

  • Strana od-do

    663-665

  • Kód UT WoS článku

    000400907900018

  • EID výsledku v databázi Scopus

    2-s2.0-85019619159