Hyperelastic-material characterization: A comparison of material constants
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F20%3A63526114" target="_blank" >RIV/70883521:28110/20:63526114 - isvavai.cz</a>
Výsledek na webu
<a href="http://mit.imt.si/izvodi/mit201/keert.pdf" target="_blank" >http://mit.imt.si/izvodi/mit201/keert.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17222/mit.2019.161" target="_blank" >10.17222/mit.2019.161</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hyperelastic-material characterization: A comparison of material constants
Popis výsledku v původním jazyce
Data fitting is an essential part of obtaining material constants for hyperelastic models. However, due to inadequate experimental data, a single-data set, i.e. uniaxial data, is often used for fitting. Despite a frequent use of this method, it is proven that it provides an inaccurate forecast for a characterization. Therefore, as an alternative method, combined-data fitting is usually recommended. In this research, material constants calculated through two different data-fitting methods were evaluated in terms of dispersion. First, material constants were obtained by taking the average of two single-data-set fitted constants (the uniaxial and biaxial data). The second method used the combined-data fitting to find the material constants. Using the constants found, biaxial and uniaxial curves were drawn for each case. For this purpose, three models, the Mooney, Ogden and Yeoh model, were selected. When considering the Mooney model, the averaged method seems not to show a sufficient improvement to the biaxial curve. The Yeoh model reacts equally to both methods, while the Ogden model seems not to be applicable to the averaged method.
Název v anglickém jazyce
Hyperelastic-material characterization: A comparison of material constants
Popis výsledku anglicky
Data fitting is an essential part of obtaining material constants for hyperelastic models. However, due to inadequate experimental data, a single-data set, i.e. uniaxial data, is often used for fitting. Despite a frequent use of this method, it is proven that it provides an inaccurate forecast for a characterization. Therefore, as an alternative method, combined-data fitting is usually recommended. In this research, material constants calculated through two different data-fitting methods were evaluated in terms of dispersion. First, material constants were obtained by taking the average of two single-data-set fitted constants (the uniaxial and biaxial data). The second method used the combined-data fitting to find the material constants. Using the constants found, biaxial and uniaxial curves were drawn for each case. For this purpose, three models, the Mooney, Ogden and Yeoh model, were selected. When considering the Mooney model, the averaged method seems not to show a sufficient improvement to the biaxial curve. The Yeoh model reacts equally to both methods, while the Ogden model seems not to be applicable to the averaged method.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materiali in Tehnologije
ISSN
1580-2949
e-ISSN
—
Svazek periodika
54
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
SI - Slovinská republika
Počet stran výsledku
3
Strana od-do
121-123
Kód UT WoS článku
000536656900018
EID výsledku v databázi Scopus
2-s2.0-85081686118