Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

MEASURING VALUE AT RISK USING GARCH MODEL - EVIDENCE FROM THE CRYPTOCURRENCY MARKET

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28120%2F21%3A63537578" target="_blank" >RIV/70883521:28120/21:63537578 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.ijek.org/index.php/IJEK/article/view/133/126" target="_blank" >https://www.ijek.org/index.php/IJEK/article/view/133/126</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    MEASURING VALUE AT RISK USING GARCH MODEL - EVIDENCE FROM THE CRYPTOCURRENCY MARKET

  • Popis výsledku v původním jazyce

    There is a growing interest in the activities of the crypto market by various stakeholders. These stakeholders generally include investors, entrepreneurs, governments, fund managers, climate activists, institutional managers, employees with surplus funds, and crypto miners. This study aims to investigate the accuracy of the GARCH models for measuring and estimating Value-at-risk (VaR) using the Cryptocurrency index for future investment and managerial decision making. Because of this, the present study uses the top 30 Cryptocurrencies index in terms of Market capitalization excluding stable coins to determine the best GARCH models. Many entrepreneurs, institutional managers, fund managers, and other stakeholders have recently included cryptocurrency in their investment portfolio because of the increase in transactions and high returns growth in the global financial market with its associated high returns and volatility. Information communication technology has paved the way for such activities in the global markets. The daily data frequency was applied because of the availability of the data. The empirical analysis has been carried out for the period from January 2017 to December 2020 for a total of 1461observation. The returns volatility is estimated using SGARCH and EGARCH models. The findings evidenced that, using both normal distribution and Student t distribution, EGARCH provides a better measure and estimate than SGARCH concerning high persistence and volatility. Against this background, the present study also examined Backtesting to estimate Value at Risk

  • Název v anglickém jazyce

    MEASURING VALUE AT RISK USING GARCH MODEL - EVIDENCE FROM THE CRYPTOCURRENCY MARKET

  • Popis výsledku anglicky

    There is a growing interest in the activities of the crypto market by various stakeholders. These stakeholders generally include investors, entrepreneurs, governments, fund managers, climate activists, institutional managers, employees with surplus funds, and crypto miners. This study aims to investigate the accuracy of the GARCH models for measuring and estimating Value-at-risk (VaR) using the Cryptocurrency index for future investment and managerial decision making. Because of this, the present study uses the top 30 Cryptocurrencies index in terms of Market capitalization excluding stable coins to determine the best GARCH models. Many entrepreneurs, institutional managers, fund managers, and other stakeholders have recently included cryptocurrency in their investment portfolio because of the increase in transactions and high returns growth in the global financial market with its associated high returns and volatility. Information communication technology has paved the way for such activities in the global markets. The daily data frequency was applied because of the availability of the data. The empirical analysis has been carried out for the period from January 2017 to December 2020 for a total of 1461observation. The returns volatility is estimated using SGARCH and EGARCH models. The findings evidenced that, using both normal distribution and Student t distribution, EGARCH provides a better measure and estimate than SGARCH concerning high persistence and volatility. Against this background, the present study also examined Backtesting to estimate Value at Risk

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    50204 - Business and management

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Entrepreneurial Knowledge

  • ISSN

    2336-2952

  • e-ISSN

  • Svazek periodika

    2

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    22

  • Strana od-do

    1-22

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus