Volatility modelling and VAR: The case of Bitcoin, ether and ripple
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F20%3A82476" target="_blank" >RIV/60460709:41110/20:82476 - isvavai.cz</a>
Výsledek na webu
<a href="https://content.sciendo.com/view/journals/danb/11/3/article-p253.xml?language=en" target="_blank" >https://content.sciendo.com/view/journals/danb/11/3/article-p253.xml?language=en</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/danb-2020-0015" target="_blank" >10.2478/danb-2020-0015</a>
Alternativní jazyky
Jazyk výsledku
čeština
Název v původním jazyce
Volatility modelling and VAR: The case of Bitcoin, ether and ripple
Popis výsledku v původním jazyce
Since Bitcoin introduction in 2008, the cryptocurrency market has grown into hundreds-of-billion-dollar market. The cryptocurrency market is well known as very volatile, mainly for the fact that the cryptocurrencies have not the price to fall back upon and that anybody can join the trading (no license or approval is required). Since empirical literature suggests that GARCH-type models dominate as VaR estimators the overall objective of this paper is to perform comprehensive volatility and VaR estimation for three major digital assets and conclude which method gives the best results in terms of risk management. The methods we used are parametric (GARCH and EWMA model), non-parametric (historical VaR) and Monte Carlo simulation (given by Geometric Brownian Motion). We conclude that the best method for value-at-risk estimation for cryptocurrencies is the Monte Carlo simulation due to the heavy diffusion (stochastic) process and robustness of the results.
Název v anglickém jazyce
Volatility modelling and VAR: The case of Bitcoin, ether and ripple
Popis výsledku anglicky
Since Bitcoin introduction in 2008, the cryptocurrency market has grown into hundreds-of-billion-dollar market. The cryptocurrency market is well known as very volatile, mainly for the fact that the cryptocurrencies have not the price to fall back upon and that anybody can join the trading (no license or approval is required). Since empirical literature suggests that GARCH-type models dominate as VaR estimators the overall objective of this paper is to perform comprehensive volatility and VaR estimation for three major digital assets and conclude which method gives the best results in terms of risk management. The methods we used are parametric (GARCH and EWMA model), non-parametric (historical VaR) and Monte Carlo simulation (given by Geometric Brownian Motion). We conclude that the best method for value-at-risk estimation for cryptocurrencies is the Monte Carlo simulation due to the heavy diffusion (stochastic) process and robustness of the results.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Danube: Law and Economics Review
ISSN
1804-8285
e-ISSN
1804-8285
Svazek periodika
11
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
17
Strana od-do
253-269
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85095680453