On the software projects' duration estimation using support vector regression
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28120%2F23%3A63564638" target="_blank" >RIV/70883521:28120/23:63564638 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/70883521:28140/23:63564638 RIV/70883521:28150/23:63564638
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-21435-6_25" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-21435-6_25</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-21435-6_25" target="_blank" >10.1007/978-3-031-21435-6_25</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the software projects' duration estimation using support vector regression
Popis výsledku v původním jazyce
Estimating the project’s duration is one of the critical steps in helping to ensure project success. It helps to allocate resources and personnel appropriately during project development. This study aims to look for a more suitable algorithm between two selected algorithms for estimating project duration. Two machine learning algorithms, Multiple Linear Regression and Support Vector Regression, were used to estimate the project’s duration. The data used here is an ISBSG dataset with intelligent preprocessing to give an ideal fit to the algorithm used. The dependent variables used in the test are project size, maximum team size, and resource level. With the two algorithms selected, the estimated value of the project's duration is relatively close to the actual duration of the project. Through the six evaluation criteria, R-square, MAE, MAPE, RMSE, MBRE, MIBRE and the pair-wise t-test statistical method, the Support Vector Regression algorithm gives a much better estimate of the project's duration than the Multiple Linear Regression algorithm. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Název v anglickém jazyce
On the software projects' duration estimation using support vector regression
Popis výsledku anglicky
Estimating the project’s duration is one of the critical steps in helping to ensure project success. It helps to allocate resources and personnel appropriately during project development. This study aims to look for a more suitable algorithm between two selected algorithms for estimating project duration. Two machine learning algorithms, Multiple Linear Regression and Support Vector Regression, were used to estimate the project’s duration. The data used here is an ISBSG dataset with intelligent preprocessing to give an ideal fit to the algorithm used. The dependent variables used in the test are project size, maximum team size, and resource level. With the two algorithms selected, the estimated value of the project's duration is relatively close to the actual duration of the project. Through the six evaluation criteria, R-square, MAE, MAPE, RMSE, MBRE, MIBRE and the pair-wise t-test statistical method, the Support Vector Regression algorithm gives a much better estimate of the project's duration than the Multiple Linear Regression algorithm. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Networks and Systems
ISBN
978-3-031-21434-9
ISSN
23673370
e-ISSN
2367-3389
Počet stran výsledku
11
Strana od-do
288-298
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Berlín
Místo konání akce
on-line
Datum konání akce
10. 10. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—