A machine-learning approach to survival time-event predicting: Initial analyses using stomach cancer data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F20%3A10419983" target="_blank" >RIV/00216208:11110/20:10419983 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11130/20:10419983 RIV/00064203:_____/20:10419983
Výsledek na webu
<a href="https://doi.org/10.1109/EHB50910.2020.9280301" target="_blank" >https://doi.org/10.1109/EHB50910.2020.9280301</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/EHB50910.2020.9280301" target="_blank" >10.1109/EHB50910.2020.9280301</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A machine-learning approach to survival time-event predicting: Initial analyses using stomach cancer data
Popis výsledku v původním jazyce
The problem of predicting whether an event of interest does occur, and if so, when it occurs for given values of independent variables, is one of the basic tasks in survival analysis. Cox proportional hazard model and its numerous variants are usually used to handle this task; however, they are limited by strict statistical assumptions. In this study, we - rather than estimate the event's hazard function - prefer to make direct predictions by decomposition of the two-dimensional dependent time-event variable, depicting the event occurrence and time-to-event, into these two components, overcoming the statistical limitations. While the first part for the event occurrence is considered as a classification task, the second part for the time-to-event estimation is assumed to be a regression task. The variable's parts are treated as the classification and regression tasks, therefore built using machine-learning algorithms such as logistic and linear regression, naïve Bayes classifiers, classification and regression trees, support vector machines and neural networks, and applied together with the Cox's model to stomach cancer data. The machine-learning modeling of both the decomposed survival time-event variable's parts seems to be a promising alternative to predictions based on the Cox's hazard modeling.
Název v anglickém jazyce
A machine-learning approach to survival time-event predicting: Initial analyses using stomach cancer data
Popis výsledku anglicky
The problem of predicting whether an event of interest does occur, and if so, when it occurs for given values of independent variables, is one of the basic tasks in survival analysis. Cox proportional hazard model and its numerous variants are usually used to handle this task; however, they are limited by strict statistical assumptions. In this study, we - rather than estimate the event's hazard function - prefer to make direct predictions by decomposition of the two-dimensional dependent time-event variable, depicting the event occurrence and time-to-event, into these two components, overcoming the statistical limitations. While the first part for the event occurrence is considered as a classification task, the second part for the time-to-event estimation is assumed to be a regression task. The variable's parts are treated as the classification and regression tasks, therefore built using machine-learning algorithms such as logistic and linear regression, naïve Bayes classifiers, classification and regression trees, support vector machines and neural networks, and applied together with the Cox's model to stomach cancer data. The machine-learning modeling of both the decomposed survival time-event variable's parts seems to be a promising alternative to predictions based on the Cox's hazard modeling.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
30502 - Other medical science
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 8th E-Health and Bioengineering Conference, EHB 2020
ISBN
978-1-72818-803-4
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
—
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
Piscataway, USA
Místo konání akce
Iasi, Romania
Datum konání akce
29. 10. 2020
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—