Analyzing public opinions regarding virtual tourism in the context of COVID-19: Unidirectional vs. 360-degree videos
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28120%2F23%3A63565098" target="_blank" >RIV/70883521:28120/23:63565098 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/70883521:28140/23:63565098
Výsledek na webu
<a href="https://www.mdpi.com/2078-2489/14/1/11" target="_blank" >https://www.mdpi.com/2078-2489/14/1/11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/info14010011" target="_blank" >10.3390/info14010011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analyzing public opinions regarding virtual tourism in the context of COVID-19: Unidirectional vs. 360-degree videos
Popis výsledku v původním jazyce
Over the last few years, more and more people have been using YouTube videos to experience virtual reality travel. Many individuals utilize comments to voice their ideas or criticize a subject on YouTube. The number of replies to 360-degree and unidirectional videos is enormous and might differ between the two kinds of videos. This presents the problem of efficiently evaluating user opinions with respect to which type of video will be more appealing to viewers, positive comments, or interest. This paper aims to study SentiStrength-SE and SenticNet7 techniques for sentiment analysis. The findings demonstrate that the sentiment analysis obtained from SenticNet7 outperforms that from SentiStrength-SE. It is revealed through the sentiment analysis that sentiment disparity among the viewers of 360-degree and unidirectional videos is low and insignificant. Furthermore, the study shows that unidirectional videos garnered the most traffic during COVID-19 induced global travel bans. The study elaborates on the capacity of unidirectional videos on travel and the implications for industry and academia. The second aim of this paper also employs a Convolutional Neural Network and Random Forest for sentiment analysis of YouTube viewers' comments, where the sentiment analysis output by SenticNet7 is used as actual values. Cross-validation with 10-folds is employed in the proposed models. The findings demonstrate that the max-voting technique outperforms compared with an individual fold.
Název v anglickém jazyce
Analyzing public opinions regarding virtual tourism in the context of COVID-19: Unidirectional vs. 360-degree videos
Popis výsledku anglicky
Over the last few years, more and more people have been using YouTube videos to experience virtual reality travel. Many individuals utilize comments to voice their ideas or criticize a subject on YouTube. The number of replies to 360-degree and unidirectional videos is enormous and might differ between the two kinds of videos. This presents the problem of efficiently evaluating user opinions with respect to which type of video will be more appealing to viewers, positive comments, or interest. This paper aims to study SentiStrength-SE and SenticNet7 techniques for sentiment analysis. The findings demonstrate that the sentiment analysis obtained from SenticNet7 outperforms that from SentiStrength-SE. It is revealed through the sentiment analysis that sentiment disparity among the viewers of 360-degree and unidirectional videos is low and insignificant. Furthermore, the study shows that unidirectional videos garnered the most traffic during COVID-19 induced global travel bans. The study elaborates on the capacity of unidirectional videos on travel and the implications for industry and academia. The second aim of this paper also employs a Convolutional Neural Network and Random Forest for sentiment analysis of YouTube viewers' comments, where the sentiment analysis output by SenticNet7 is used as actual values. Cross-validation with 10-folds is employed in the proposed models. The findings demonstrate that the max-voting technique outperforms compared with an individual fold.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF19_073%2F0016941" target="_blank" >EF19_073/0016941: Juniorské granty UTB ve Zlíně</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information
ISSN
2078-2489
e-ISSN
2078-2489
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
000917600000001
EID výsledku v databázi Scopus
2-s2.0-85146754375