Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Service quality dimensions in Austrian food retailing – a text mining approach for physical retail stores

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28120%2F24%3A63576518" target="_blank" >RIV/70883521:28120/24:63576518 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.tandfonline.com/doi/full/10.1080/09593969.2024.2371456" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/09593969.2024.2371456</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/09593969.2024.2371456" target="_blank" >10.1080/09593969.2024.2371456</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Service quality dimensions in Austrian food retailing – a text mining approach for physical retail stores

  • Popis výsledku v původním jazyce

    Investigating Service Quality (SQ) and its implications for customer satisfaction has become an increasingly popular research area. Especially in the context of physical grocery retailing, ensuring customer satisfaction has become a key success factor. Most previous research studies apply traditional methods (e.g. surveys) for physical shops and utilize text mining-based approaches mainly for e-commerce. In our paper, we propose a novel approach based on LDA. By combining expert-based word counting analysis with the LDA approach, we confirm that unsupervised text mining based on LDA can be used as a reliable approach to cluster textual comments to SQ dimensions in physical retail settings. We have analyzed over 163,000 publicly available textual customer reviews related to the Austrian market, which is special in terms of its extremely high density of retail outlets, high price levels and a tendency towards traditional form of shopping. Our results show that personal interaction, policies, and product-related aspects seem to be positive drivers of customer satisfaction, while reliability is a clear driver of customer dissatisfaction. Results also show a significantly higher relevance of personal interaction in smaller stores and cities with fewer than 5,000 inhabitants than in other store types and bigger cities. Regarding practical implications, hypermarkets should focus on physical aspects to reduce negative reviews and increase efforts in personal interaction to increase positive reviews. On the other hand, smaller stores should continue to rely on personal interaction to avoid negative reviews and might focus on higher reliability to generate more positive reviews. The applied text-mining approach enables future research with a starting base to analyze SQ dimensions and their relevance in additional countries or area, as e.g. fashion or hardware retail.

  • Název v anglickém jazyce

    Service quality dimensions in Austrian food retailing – a text mining approach for physical retail stores

  • Popis výsledku anglicky

    Investigating Service Quality (SQ) and its implications for customer satisfaction has become an increasingly popular research area. Especially in the context of physical grocery retailing, ensuring customer satisfaction has become a key success factor. Most previous research studies apply traditional methods (e.g. surveys) for physical shops and utilize text mining-based approaches mainly for e-commerce. In our paper, we propose a novel approach based on LDA. By combining expert-based word counting analysis with the LDA approach, we confirm that unsupervised text mining based on LDA can be used as a reliable approach to cluster textual comments to SQ dimensions in physical retail settings. We have analyzed over 163,000 publicly available textual customer reviews related to the Austrian market, which is special in terms of its extremely high density of retail outlets, high price levels and a tendency towards traditional form of shopping. Our results show that personal interaction, policies, and product-related aspects seem to be positive drivers of customer satisfaction, while reliability is a clear driver of customer dissatisfaction. Results also show a significantly higher relevance of personal interaction in smaller stores and cities with fewer than 5,000 inhabitants than in other store types and bigger cities. Regarding practical implications, hypermarkets should focus on physical aspects to reduce negative reviews and increase efforts in personal interaction to increase positive reviews. On the other hand, smaller stores should continue to rely on personal interaction to avoid negative reviews and might focus on higher reliability to generate more positive reviews. The applied text-mining approach enables future research with a starting base to analyze SQ dimensions and their relevance in additional countries or area, as e.g. fashion or hardware retail.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    50204 - Business and management

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Review of Retail, Distribution and Consumer Research

  • ISSN

    0959-3969

  • e-ISSN

    1466-4402

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    neruveden

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    36

  • Strana od-do

    1-36

  • Kód UT WoS článku

    001257385400001

  • EID výsledku v databázi Scopus

    2-s2.0-85197436316